

 Navigation

 	
 index

 	
 next |

 	Mutagen Specs 1.0 documentation

Mutagen Spec Collection

	ID3
	ID3 tag version 2

	ID3 tag version 2.3.0

	ID3 tag version 2.4.0 - Main Structure

	ID3 tag version 2.4.0 - Native Frames

	ID3v2 Chapters 1.0

	ID3v2 Accessibility 1.0

	ID3v1 Winamp Genre Mapping

	Off-Spec Frames

	Musepack
	SV8 Specification

	APEv2
	APEv2

	MP4

	ASF

	Ogg

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

ID3

	ID3 tag version 2

	ID3 tag version 2.3.0

	ID3 tag version 2.4.0 - Main Structure

	ID3 tag version 2.4.0 - Native Frames

	ID3v2 Chapters 1.0

	ID3v2 Accessibility 1.0

	ID3v1 Winamp Genre Mapping

	Off-Spec Frames

	MP3/ID3 [http://www.id3.org/]

	
	MPEG audio header format [http://www.dv.co.yu/mpgscript/mpeghdr.htm],

	and the Xing VBR header [http://www.codeproject.com/audio/MPEGAudioInfo.asp#XINGHeader]

	ID3v2.4 structure [http://www.id3.org/id3v2.4.0-structure.txt],
ID3v2.4 frame list [http://www.id3.org/id3v2.4.0-frames.txt],
ID3v2.3 [http://www.id3.org/id3v2.3.0.html],
ID3v2.2 [http://www.id3.org/id3v2-00.txt], and
ID3v1 [http://www.id3.org/id3v1.html]

	Lyrics3v2 [http://www.id3.org/lyrics3200.html]

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3 tag version 2

Status of this document

This document is an Informal standard and is released so that implementors
could have a set standard before the formal standard is set. The formal
standard will use another version number if not identical to what is described
in this document. The contents in this document may change for clarifications
but never for added or altered functionallity.

Distribution of this document is unlimited.

Abstract

The recent gain of popularity for MPEG layer III audio files on the internet
forced a standardised way of storing information about an audio file within
itself to determinate its origin and contents.

Today the most accepted way to do this is with the so called ID3 tag, which is
simple but very limited and in some cases very unsuitable. The ID3 tag has
very limited space in every field, very limited numbers of fields, not
expandable or upgradeable and is placed at the end of a the file, which is
unsuitable for streaming audio. This draft is an attempt to answer these
issues with a new version of the ID3 tag.

Conventions in this document

In the examples, text within “” is a text string exactly as it appears in a
file. Numbers preceded with $ are hexadecimal and numbers preceded with % are
binary. $xx is used to indicate a byte with unknown content. %x is used to
indicate a bit with unknown content. The most significant bit (MSB) of a byte
is called ‘bit 7’ and the least significant bit (LSB) is called ‘bit 0’.

A tag is the whole tag described in this document. A frame is a block of
information in the tag. The tag consists of a header, frames and optional
padding. A field is a piece of information; one value, a string etc. A numeric
string is a string that consists of the characters 0-9 only.

ID3v2 overview

The two biggest design goals were to be able to implement ID3v2 without
disturbing old software too much and that ID3v2 should be expandable.

The first criterion is met by the simple fact that the MPEG [MPEG] decoding
software uses a syncsignal, embedded in the audiostream, to ‘lock on to’ the
audio. Since the ID3v2 tag doesn’t contain a valid syncsignal, no software
will attempt to play the tag. If, for any reason, coincidence make a
syncsignal appear within the tag it will be taken care of by the
‘unsynchronisation scheme’ described in section 5.

The second criterion has made a more noticeable impact on the design of the
ID3v2 tag. It is constructed as a container for several information blocks,
called frames, whose format need not be known to the software that encounters
them. At the start of every frame there is an identifier that explains the
frames’s format and content, and a size descriptor that allows software to
skip unknown frames.

If a total revision of the ID3v2 tag should be needed, there is a version
number and a size descriptor in the ID3v2 header.

The ID3 tag described in this document is mainly targeted to files encoded
with MPEG-2 layer I, MPEG-2 layer II, MPEG-2 layer III and MPEG-2.5, but may
work with other types of encoded audio.

The bitorder in ID3v2 is most significant bit first (MSB). The byteorder in
multibyte numbers is most significant byte first (e.g. $12345678 would be
encoded $12 34 56 78).

It is permitted to include padding after all the final frame (at the end of
the ID3 tag), making the size of all the frames together smaller than the size
given in the head of the tag. A possible purpose of this padding is to allow
for adding a few additional frames or enlarge existing frames within the tag
without having to rewrite the entire file. The value of the padding bytes must
be $00.

ID3v2 header

The ID3v2 tag header, which should be the first information in the
file, is 10 bytes as follows:

ID3/file identifier "ID3"
ID3 version $02 00
ID3 flags %xx000000
ID3 size 4 * %0xxxxxxx

The first three bytes of the tag are always “ID3” to indicate that
this is an ID3 tag, directly followed by the two version bytes. The
first byte of ID3 version is it’s major version, while the second byte
is its revision number. All revisions are backwards compatible while
major versions are not. If software with ID3v2 and below support
should encounter version three or higher it should simply ignore the
whole tag. Version and revision will never be $FF.

The first bit (bit 7) in the ‘ID3 flags’ is indicating whether or not
unsynchronisation is used (see section 5 for details); a set bit
indicates usage.

The second bit (bit 6) is indicating whether or not compression is
used; a set bit indicates usage. Since no compression scheme has been
decided yet, the ID3 decoder (for now) should just ignore the entire
tag if the compression bit is set.

The ID3 tag size is encoded with four bytes where the first bit (bit
7) is set to zero in every byte, making a total of 28 bits. The zeroed
bits are ignored, so a 257 bytes long tag is represented as $00 00 02
01.

The ID3 tag size is the size of the complete tag after
unsychronisation, including padding, excluding the header (total tag
size - 10). The reason to use 28 bits (representing up to 256MB) for
size description is that we don’t want to run out of space here.

A ID3v2 tag can be detected with the following pattern:

$49 44 33 yy yy xx zz zz zz zz

Where yy is less than $FF, xx is the ‘flags’ byte and zz is less than
$80.

ID3v2 frames overview

The headers of the frames are similar in their construction. They consist of
one three character identifier (capital A-Z and 0-9) and one three byte size
field, making a total of six bytes. The header is excluded from the size.
Identifiers beginning with “X”, “Y” and “Z” are for experimental use and free
for everyone to use. Have in mind that someone else might have used the same
identifier as you. All other identifiers are either used or reserved for
future use.

The three character frame identifier is followed by a three byte size
descriptor, making a total header size of six bytes in every frame. The size
is calculated as framesize excluding frame identifier and size descriptor
(frame size - 6).

There is no fixed order of the frames’ appearance in the tag, although it is
desired that the frames are arranged in order of significance concerning the
recognition of the file. An example of such order: UFI, MCI, TT2 ...

A tag must contain at least one frame. A frame must be at least 1 byte big,
excluding the 6-byte header.

If nothing else is said a string is represented as ISO-8859-1 [ISO-8859-1]
characters in the range $20 - $FF. All unicode strings [UNICODE] use 16-bit
unicode 2.0 (ISO/IEC 10646-1:1993, UCS-2). All numeric strings are always
encoded as ISO-8859-1. Terminated strings are terminated with $00 if encoded
with ISO-8859-1 and $00 00 if encoded as unicode. If nothing else is said
newline character is forbidden. In ISO-8859-1 a new line is represented, when
allowed, with $0A only. Frames that allow different types of text encoding
have a text encoding description byte directly after the frame size. If
ISO-8859-1 is used this byte should be $00, if unicode is used it should be
$01.

The three byte language field is used to describe the language of the frame’s
content, according to ISO-639-2 [ISO-639-2].

All URLs [URL] may be relative, e.g. “picture.png”, ”../doc.txt”.

If a frame is longer than it should be, e.g. having more fields than specified
in this document, that indicates that additions to the frame have been made in
a later version of the ID3 standard. This is reflected by the revision number
in the header of the tag.

Declared ID3v2 frames

The following frames are declared in this draft.

	BUF Recommended buffer size

	CNT Play counter

	COM Comments

	CRA Audio encryption

	CRM Encrypted meta frame

	ETC Event timing codes

	EQU Equalization

	GEO General encapsulated object

	IPL Involved people list

	LNK Linked information

	MCI Music CD Identifier

	MLL MPEG location lookup table

	PIC Attached picture

	POP Popularimeter

	REV Reverb

	RVA Relative volume adjustment

	SLT Synchronized lyric/text

	STC Synced tempo codes

	TAL Album/Movie/Show title

	TBP BPM (Beats Per Minute)

	TCM Composer

	TCO Content type

	TCR Copyright message

	TDA Date

	TDY Playlist delay

	TEN Encoded by

	TFT File type

	TIM Time

	TKE Initial key

	TLA Language(s)

	TLE Length

	TMT Media type

	TOA Original artist(s)/performer(s)

	TOF Original filename

	TOL Original Lyricist(s)/text writer(s)

	TOR Original release year

	TOT Original album/Movie/Show title

	TP1 Lead artist(s)/Lead performer(s)/Soloist(s)/Performing group

	TP2 Band/Orchestra/Accompaniment

	TP3 Conductor/Performer refinement

	TP4 Interpreted, remixed, or otherwise modified by

	TPA Part of a set

	TPB Publisher

	TRC ISRC (International Standard Recording Code)

	TRD Recording dates

	TRK Track number/Position in set

	TSI Size

	TSS Software/hardware and settings used for encoding

	TT1 Content group description

	TT2 Title/Songname/Content description

	TT3 Subtitle/Description refinement

	TXT Lyricist/text writer

	TXX User defined text information frame

	TYE Year

	UFI Unique file identifier

	ULT Unsychronized lyric/text transcription

	WAF Official audio file webpage

	WAR Official artist/performer webpage

	WAS Official audio source webpage

	WCM Commercial information

	WCP Copyright/Legal information

	WPB Publishers official webpage

	WXX User defined URL link frame

Unique file identifier

This frame’s purpose is to be able to identify the audio file in a database
that may contain more information relevant to the content. Since
standardisation of such a database is beyond this document, all frames begin
with a null-terminated string with a URL [URL] containing an email address, or
a link to a location where an email address can be found, that belongs to the
organisation responsible for this specific database implementation. Questions
regarding the database should be sent to the indicated email address. The URL
should not be used for the actual database queries. If a $00 is found directly
after the ‘Frame size’ the whole frame should be ignored, and preferably be
removed. The ‘Owner identifier’ is then followed by the actual identifier,
which may be up to 64 bytes. There may be more than one “UFI” frame in a tag,
but only one with the same ‘Owner identifier’.

Unique file identifier "UFI"
Frame size $xx xx xx
Owner identifier <textstring> $00
Identifier <up to 64 bytes binary data>

Text information frames

The text information frames are the most important frames, containing
information like artist, album and more. There may only be one text
information frame of its kind in an tag. If the textstring is followed by a
termination ($00 (00)) all the following information should be ignored and not
be displayed. All the text information frames have the following format:

Text information identifier "T00" - "TZZ" , excluding "TXX",
 described in 4.2.2.
Frame size $xx xx xx
Text encoding $xx
Information <textstring>

Text information frames - details

	TT1

	The ‘Content group description’ frame is used if the sound belongs to a
larger category of sounds/music. For example, classical music is often
sorted in different musical sections (e.g. “Piano Concerto”, “Weather -
Hurricane”).

	TT2

	The ‘Title/Songname/Content description’ frame is the actual name of the
piece (e.g. “Adagio”, “Hurricane Donna”).

	TT3

	The ‘Subtitle/Description refinement’ frame is used for information
directly related to the contents title (e.g. “Op. 16” or “Performed
live at wembley”).

	TP1

	The ‘Lead artist(s)/Lead performer(s)/Soloist(s)/Performing group’ is
used for the main artist(s). They are seperated with the “/”
character.

	TP2

	The ‘Band/Orchestra/Accompaniment’ frame is used for additional
information about the performers in the recording.

	TP3

	The ‘Conductor’ frame is used for the name of the conductor.

	TP4

	The ‘Interpreted, remixed, or otherwise modified by’ frame contains
more information about the people behind a remix and similar
interpretations of another existing piece.

	TCM

	The ‘Composer(s)’ frame is intended for the name of the composer(s).
They are seperated with the “/” character.

	TXT

	The ‘Lyricist(s)/text writer(s)’ frame is intended for the writer(s)
of the text or lyrics in the recording. They are seperated with the
“/” character.

	TLA

	The ‘Language(s)’ frame should contain the languages of the text or
lyrics in the audio file. The language is represented with three
characters according to ISO-639-2. If more than one language is used
in the text their language codes should follow according to their
usage.

	TCO

	The content type, which previously (in ID3v1.1, see appendix A) was
stored as a one byte numeric value only, is now a numeric string. You
may use one or several of the types as ID3v1.1 did or, since the
category list would be impossible to maintain with accurate and up to
date categories, define your own.
References to the ID3v1 genres can be made by, as first byte, enter
“(” followed by a number from the genres list (section A.3.) and
ended with a ”)” character. This is optionally followed by a
refinement, e.g. “(21)” or “(4)Eurodisco”. Several references can be
made in the same frame, e.g. “(51)(39)”. If the refinement should
begin with a “(” character it should be replaced with “((”, e.g. “((I
can figure out any genre)” or “(55)((I think...)”. The following new
content types is defined in ID3v2 and is implemented in the same way
as the numerig content types, e.g. “(RX)”.

RX Remix
CR Cover

	TAL

	The ‘Album/Movie/Show title’ frame is intended for the title of the
recording(/source of sound) which the audio in the file is taken from.

	TPA

	The ‘Part of a set’ frame is a numeric string that describes which
part of a set the audio came from. This frame is used if the source
described in the “TAL” frame is divided into several mediums, e.g. a
double CD. The value may be extended with a “/” character and a
numeric string containing the total number of parts in the set. E.g.
“1/2”.

	TRK

	The ‘Track number/Position in set’ frame is a numeric string
containing the order number of the audio-file on its original
recording. This may be extended with a “/” character and a numeric
string containing the total numer of tracks/elements on the original
recording. E.g. “4/9”.

	TRC

	The ‘ISRC’ frame should contian the International Standard Recording
Code [ISRC].

	TYE

	The ‘Year’ frame is a numeric string with a year of the recording.
This frames is always four characters long (until the year 10000).

	TDA

	The ‘Date’ frame is a numeric string in the DDMM format containing
the date for the recording. This field is always four characters
long.

	TIM

	The ‘Time’ frame is a numeric string in the HHMM format containing
the time for the recording. This field is always four characters
long.

	TRD

	The ‘Recording dates’ frame is a intended to be used as complement to
the “TYE”, “TDA” and “TIM” frames. E.g. “4th-7th June, 12th June” in
combination with the “TYE” frame.

	TMT

	The ‘Media type’ frame describes from which media the sound originated.
This may be a textstring or a reference to the predefined media types
found in the list below. References are made within “(” and ”)” and are
optionally followed by a text refinement, e.g. “(MC) with four channels”.
If a text refinement should begin with a “(” character it should be
replaced with “((” in the same way as in the “TCO” frame. Predefined
refinements is appended after the media type, e.g. “(CD/S)” or
“(VID/PAL/VHS)”.

DIG Other digital media
 /A Analog transfer from media

ANA Other analog media
 /WAC Wax cylinder
 /8CA 8-track tape cassette

CD CD
 /A Analog transfer from media
 /DD DDD
 /AD ADD
 /AA AAD

LD Laserdisc
 /A Analog transfer from media

TT Turntable records
 /33 33.33 rpm
 /45 45 rpm
 /71 71.29 rpm
 /76 76.59 rpm
 /78 78.26 rpm
 /80 80 rpm

MD MiniDisc
 /A Analog transfer from media

DAT DAT
 /A Analog transfer from media
 /1 standard, 48 kHz/16 bits, linear
 /2 mode 2, 32 kHz/16 bits, linear
 /3 mode 3, 32 kHz/12 bits, nonlinear, low speed
 /4 mode 4, 32 kHz/12 bits, 4 channels
 /5 mode 5, 44.1 kHz/16 bits, linear
 /6 mode 6, 44.1 kHz/16 bits, 'wide track' play

DCC DCC
 /A Analog transfer from media

DVD DVD
 /A Analog transfer from media

TV Television
 /PAL PAL
 /NTSC NTSC
 /SECAM SECAM

VID Video
 /PAL PAL
 /NTSC NTSC
 /SECAM SECAM
 /VHS VHS
 /SVHS S-VHS
 /BETA BETAMAX

RAD Radio
 /FM FM
 /AM AM
 /LW LW
 /MW MW

TEL Telephone
 /I ISDN

MC MC (normal cassette)
 /4 4.75 cm/s (normal speed for a two sided cassette)
 /9 9.5 cm/s
 /I Type I cassette (ferric/normal)
 /II Type II cassette (chrome)
 /III Type III cassette (ferric chrome)
 /IV Type IV cassette (metal)

REE Reel
 /9 9.5 cm/s
 /19 19 cm/s
 /38 38 cm/s
 /76 76 cm/s
 /I Type I cassette (ferric/normal)
 /II Type II cassette (chrome)
 /III Type III cassette (ferric chrome)
 /IV Type IV cassette (metal)

	TFT

	
The ‘File type’ frame indicates which type of audio this tag defines.
The following type and refinements are defined:

MPG MPEG Audio
 /1 MPEG 2 layer I
 /2 MPEG 2 layer II
 /3 MPEG 2 layer III
 /2.5 MPEG 2.5
 /AAC Advanced audio compression

but other types may be used, not for these types though. This is used
in a similar way to the predefined types in the “TMT” frame, but
without parenthesis. If this frame is not present audio type is
assumed to be “MPG”.

	TBP

	BPM is short for beats per minute, and is easily computed by
dividing the number of beats in a musical piece with its length. To
get a more accurate result, do the BPM calculation on the main-part
only. To acquire best result measure the time between each beat and
calculate individual BPM for each beat and use the median value as
result. BPM is an integer and represented as a numerical string.

	TCR

	The ‘Copyright message’ frame, which must begin with a year and a
space character (making five characters), is intended for the
copyright holder of the original sound, not the audio file itself. The
absence of this frame means only that the copyright information is
unavailable or has been removed, and must not be interpreted to mean
that the sound is public domain. Every time this field is displayed
the field must be preceded with “Copyright ” (C) ” ”, where (C) is one
character showing a C in a circle.

	TPB

	The ‘Publisher’ frame simply contains the name of the label or
publisher.

	TEN

	The ‘Encoded by’ frame contains the name of the person or
organisation that encoded the audio file. This field may contain a
copyright message, if the audio file also is copyrighted by the
encoder.

	TSS

	The ‘Software/hardware and settings used for encoding’ frame
includes the used audio encoder and its settings when the file was
encoded. Hardware refers to hardware encoders, not the computer on
which a program was run.

	TOF

	The ‘Original filename’ frame contains the preferred filename for the
file, since some media doesn’t allow the desired length of the
filename. The filename is case sensitive and includes its suffix.

	TLE

	The ‘Length’ frame contains the length of the audiofile in
milliseconds, represented as a numeric string.

	TSI

	The ‘Size’ frame contains the size of the audiofile in bytes
excluding the tag, represented as a numeric string.

	TDY

	The ‘Playlist delay’ defines the numbers of milliseconds of silence
between every song in a playlist. The player should use the “ETC”
frame, if present, to skip initial silence and silence at the end of
the audio to match the ‘Playlist delay’ time. The time is represented
as a numeric string.

	TKE

	The ‘Initial key’ frame contains the musical key in which the sound
starts. It is represented as a string with a maximum length of three
characters. The ground keys are represented with “A”,”B”,”C”,”D”,”E”,
“F” and “G” and halfkeys represented with “b” and “#”. Minor is
represented as “m”. Example “Cbm”. Off key is represented with an “o”
only.

	TOT

	The ‘Original album/Movie/Show title’ frame is intended for the title
of the original recording(/source of sound), if for example the music
in the file should be a cover of a previously released song.

	TOA

	The ‘Original artist(s)/performer(s)’ frame is intended for the
performer(s) of the original recording, if for example the music in
the file should be a cover of a previously released song. The
performers are seperated with the “/” character.

	TOL

	The ‘Original Lyricist(s)/text writer(s)’ frame is intended for the
text writer(s) of the original recording, if for example the music in
the file should be a cover of a previously released song. The text
writers are seperated with the “/” character.

	TOR

	The ‘Original release year’ frame is intended for the year when the
original recording, if for example the music in the file should be a
cover of a previously released song, was released. The field is
formatted as in the “TDY” frame.

User defined text information frame

This frame is intended for one-string text information concerning the
audiofile in a similar way to the other “T”xx frames. The frame body consists
of a description of the string, represented as a terminated string, followed
by the actual string. There may be more than one “TXX” frame in each tag, but
only one with the same description.

User defined... "TXX"
Frame size $xx xx xx
Text encoding $xx
Description <textstring> $00 (00)
Value <textstring>

URL link frames

With these frames dynamic data such as webpages with touring information,
price information or plain ordinary news can be added to the tag. There may
only be one URL [URL] link frame of its kind in an tag, except when stated
otherwise in the frame description. If the textstring is followed by a
termination ($00 (00)) all the following information should be ignored and not
be displayed. All URL link frames have the following format:

URL link frame "W00" - "WZZ" , excluding "WXX"
 (described in 4.3.2.)
Frame size $xx xx xx
URL <textstring>

URL link frames - details

	WAF

	The ‘Official audio file webpage’ frame is a URL pointing at a file
specific webpage.

	WAR

	The ‘Official artist/performer webpage’ frame is a URL pointing at
the artists official webpage. There may be more than one “WAR” frame
in a tag if the audio contains more than one performer.

	WAS

	The ‘Official audio source webpage’ frame is a URL pointing at the
official webpage for the source of the audio file, e.g. a movie.

	WCM

	The ‘Commercial information’ frame is a URL pointing at a webpage
with information such as where the album can be bought. There may be
more than one “WCM” frame in a tag.

	WCP

	The ‘Copyright/Legal information’ frame is a URL pointing at a
webpage where the terms of use and ownership of the file is described.

	WPB

	The ‘Publishers official webpage’ frame is a URL pointing at the
official wepage for the publisher.

User defined URL link frame

This frame is intended for URL [URL] links concerning the audiofile in a
similar way to the other “W”xx frames. The frame body consists of a
description of the string, represented as a terminated string, followed by the
actual URL. The URL is always encoded with ISO-8859-1 [ISO-8859-1]. There may
be more than one “WXX” frame in each tag, but only one with the same
description.

User defined... "WXX"
Frame size $xx xx xx
Text encoding $xx
Description <textstring> $00 (00)
URL <textstring>

Involved people list

Since there might be a lot of people contributing to an audio file in various
ways, such as musicians and technicians, the ‘Text information frames’ are
often insufficient to list everyone involved in a project. The ‘Involved
people list’ is a frame containing the names of those involved, and how they
were involved. The body simply contains a terminated string with the
involvement directly followed by a terminated string with the involvee
followed by a new involvement and so on. There may only be one “IPL” frame in
each tag.

Involved people list "IPL"
Frame size $xx xx xx
Text encoding $xx
People list strings <textstrings>

Music CD Identifier

This frame is intended for music that comes from a CD, so that the CD
can be identified in databases such as the CDDB [CDDB]. The frame
consists of a binary dump of the Table Of Contents, TOC, from the CD,
which is a header of 4 bytes and then 8 bytes/track on the CD making a
maximum of 804 bytes. This frame requires a present and valid “TRK”
frame. There may only be one “MCI” frame in each tag.

Music CD identifier "MCI"
Frame size $xx xx xx
CD TOC <binary data>

Event timing codes

This frame allows synchronisation with key events in a song or sound. The head
is:

Event timing codes "ETC"
Frame size $xx xx xx
Time stamp format $xx

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Abolute time means that every stamp contains the time from the
beginning of the file.

Followed by a list of key events in the following format:

Type of event $xx
Time stamp $xx (xx ...)

The ‘Time stamp’ is set to zero if directly at the beginning of the
sound or after the previous event. All events should be sorted in
chronological order. The type of event is as follows:

$00 padding (has no meaning)
$01 end of initial silence
$02 intro start
$03 mainpart start
$04 outro start
$05 outro end
$06 verse begins
$07 refrain begins
$08 interlude
$09 theme start
$0A variation
$0B key change
$0C time change
$0D unwanted noise (Snap, Crackle & Pop)

$0E-$DF reserved for future use

$E0-$EF not predefined sync 0-F

$F0-$FC reserved for future use

$FD audio end (start of silence)
$FE audio file ends
$FF one more byte of events follows (all the following bytes with
 the value $FF have the same function)

The ‘Not predefined sync’s ($E0-EF) are for user events. You might
want to synchronise your music to something, like setting of an
explosion on-stage, turning on your screensaver etc.

There may only be one “ETC” frame in each tag.

MPEG location lookup table

To increase performance and accuracy of jumps within a MPEG [MPEG]
audio file, frames with timecodes in different locations in the file
might be useful. The ID3 frame includes references that the software
can use to calculate positions in the file. After the frame header is
a descriptor of how much the ‘frame counter’ should increase for every
reference. If this value is two then the first reference points out
the second frame, the 2nd reference the 4th frame, the 3rd reference
the 6th frame etc. In a similar way the ‘bytes between reference’ and
‘milliseconds between reference’ points out bytes and milliseconds
respectively.

Each reference consists of two parts; a certain number of bits, as
defined in ‘bits for bytes deviation’, that describes the difference
between what is said in ‘bytes between reference’ and the reality and
a certain number of bits, as defined in ‘bits for milliseconds
deviation’, that describes the difference between what is said in
‘milliseconds between reference’ and the reality. The number of bits
in every reference, i.e. ‘bits for bytes deviation’+’bits for
milliseconds deviation’, must be a multiple of four. There may only be
one “MLL” frame in each tag.

Location lookup table "MLL"
ID3 frame size $xx xx xx
MPEG frames between reference $xx xx
Bytes between reference $xx xx xx
Milliseconds between reference $xx xx xx
Bits for bytes deviation $xx
Bits for milliseconds dev. $xx

Then for every reference the following data is included;

Deviation in bytes %xxx....
Deviation in milliseconds %xxx....

Synced tempo codes

For a more accurate description of the tempo of a musical piece this
frame might be used. After the header follows one byte describing
which time stamp format should be used. Then follows one or more tempo
codes. Each tempo code consists of one tempo part and one time part.
The tempo is in BPM described with one or two bytes. If the first byte
has the value $FF, one more byte follows, which is added to the first
giving a range from 2 - 510 BPM, since $00 and $01 is reserved. $00 is
used to describe a beat-free time period, which is not the same as a
music-free time period. $01 is used to indicate one single beat-stroke
followed by a beat-free period.

The tempo descriptor is followed by a time stamp. Every time the tempo
in the music changes, a tempo descriptor may indicate this for the
player. All tempo descriptors should be sorted in chronological order.
The first beat-stroke in a time-period is at the same time as the beat
description occurs. There may only be one “STC” frame in each tag.

Synced tempo codes "STC"
Frame size $xx xx xx
Time stamp format $xx
Tempo data <binary data>

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Abolute time means that every stamp contains the time from the
beginning of the file.

Unsychronised lyrics/text transcription

This frame contains the lyrics of the song or a text transcription of
other vocal activities. The head includes an encoding descriptor and
a content descriptor. The body consists of the actual text. The
‘Content descriptor’ is a terminated string. If no descriptor is
entered, ‘Content descriptor’ is $00 (00) only. Newline characters
are allowed in the text. Maximum length for the descriptor is 64
bytes. There may be more than one lyrics/text frame in each tag, but
only one with the same language and content descriptor.

Unsynced lyrics/text "ULT"
Frame size $xx xx xx
Text encoding $xx
Language $xx xx xx
Content descriptor <textstring> $00 (00)
Lyrics/text <textstring>

Synchronised lyrics/text

This is another way of incorporating the words, said or sung lyrics,
in the audio file as text, this time, however, in sync with the audio.
It might also be used to describing events e.g. occurring on a stage
or on the screen in sync with the audio. The header includes a content
descriptor, represented with as terminated textstring. If no
descriptor is entered, ‘Content descriptor’ is $00 (00) only.

Synced lyrics/text "SLT"
Frame size $xx xx xx
Text encoding $xx
Language $xx xx xx
Time stamp format $xx
Content type $xx
Content descriptor <textstring> $00 (00)

	Encoding: $00 ISO-8859-1 [ISO-8859-1] character set is used => $00

	
is sync identifier.

	$01 Unicode [UNICODE] character set is used => $00 00 is

	sync identifier.

	Content type: $00 is other

	$01 is lyrics
$02 is text transcription
$03 is movement/part name (e.g. “Adagio”)
$04 is events (e.g. “Don Quijote enters the stage”)
$05 is chord (e.g. “Bb F Fsus”)

Time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Abolute time means that every stamp contains the time from the
beginning of the file.

The text that follows the frame header differs from that of the
unsynchronised lyrics/text transcription in one major way. Each
syllable (or whatever size of text is considered to be convenient by
the encoder) is a null terminated string followed by a time stamp
denoting where in the sound file it belongs. Each sync thus has the
following structure:

Terminated text to be synced (typically a syllable)
Sync identifier (terminator to above string) $00 (00)
Time stamp $xx (xx ...)

The ‘time stamp’ is set to zero or the whole sync is omitted if
located directly at the beginning of the sound. All time stamps should
be sorted in chronological order. The sync can be considered as a
validator of the subsequent string.

Newline characters are allowed in all “SLT” frames and should be used
after every entry (name, event etc.) in a frame with the content type
$03 - $04.

A few considerations regarding whitespace characters: Whitespace
separating words should mark the beginning of a new word, thus
occurring in front of the first syllable of a new word. This is also
valid for new line characters. A syllable followed by a comma should
not be broken apart with a sync (both the syllable and the comma
should be before the sync).

An example: The “ULT” passage

"Strangers in the night" $0A "Exchanging glances"

would be “SLT” encoded as:

"Strang" $00 xx xx "ers" $00 xx xx " in" $00 xx xx " the" $00 xx xx
" night" $00 xx xx 0A "Ex" $00 xx xx "chang" $00 xx xx "ing" $00 xx
xx "glan" $00 xx xx "ces" $00 xx xx

There may be more than one “SLT” frame in each tag, but only one with
the same language and content descriptor.

Comments

This frame replaces the old 30-character comment field in ID3v1. It
consists of a frame head followed by encoding, language and content
descriptors and is ended with the actual comment as a text string.
Newline characters are allowed in the comment text string. There may
be more than one comment frame in each tag, but only one with the same
language and content descriptor.

Comment "COM"
Frame size $xx xx xx
Text encoding $xx
Language $xx xx xx
Short content description <textstring> $00 (00)
The actual text <textstring>

Relative volume adjustment

This is a more subjective function than the previous ones. It allows
the user to say how much he wants to increase/decrease the volume on
each channel while the file is played. The purpose is to be able to
align all files to a reference volume, so that you don’t have to
change the volume constantly. This frame may also be used to balance
adjust the audio. If the volume peak levels are known then this could
be described with the ‘Peak volume right’ and ‘Peak volume left’
field. If Peakvolume is not known these fields could be left zeroed
or completely omitted. There may only be one “RVA” frame in each
tag.

Relative volume adjustment "RVA"
Frame size $xx xx xx
Increment/decrement %000000xx
Bits used for volume descr. $xx
Relative volume change, right $xx xx (xx ...)
Relative volume change, left $xx xx (xx ...)
Peak volume right $xx xx (xx ...)
Peak volume left $xx xx (xx ...)

In the increment/decrement field bit 0 is used to indicate the right
channel and bit 1 is used to indicate the left channel. 1 is
increment and 0 is decrement.

The ‘bits used for volume description’ field is normally $10 (16 bits)
for MPEG 2 layer I, II and III [MPEG] and MPEG 2.5. This value may not
be $00. The volume is always represented with whole bytes, padded in
the beginning (highest bits) when ‘bits used for volume description’
is not a multiple of eight.

Equalisation

This is another subjective, alignment frame. It allows the user to
predefine an equalisation curve within the audio file. There may only
be one “EQU” frame in each tag.

Equalisation "EQU"
Frame size $xx xx xx
Adjustment bits $xx

The ‘adjustment bits’ field defines the number of bits used for
representation of the adjustment. This is normally $10 (16 bits) for
MPEG 2 layer I, II and III [MPEG] and MPEG 2.5. This value may not be
$00.

This is followed by 2 bytes + (‘adjustment bits’ rounded up to the
nearest byte) for every equalisation band in the following format,
giving a frequency range of 0 - 32767Hz:

Increment/decrement %x (MSB of the Frequency)
Frequency (lower 15 bits)
Adjustment $xx (xx ...)

The increment/decrement bit is 1 for increment and 0 for decrement.
The equalisation bands should be ordered increasingly with reference
to frequency. All frequencies don’t have to be declared. Adjustments
with the value $00 should be omitted. A frequency should only be
described once in the frame.

Reverb

Yet another subjective one. You may here adjust echoes of different
kinds. Reverb left/right is the delay between every bounce in ms.
Reverb bounces left/right is the number of bounces that should be
made. $FF equals an infinite number of bounces. Feedback is the amount
of volume that should be returned to the next echo bounce. $00 is 0%,
$FF is 100%. If this value were $7F, there would be 50% volume
reduction on the first bounce, yet 50% on the second and so on. Left
to left means the sound from the left bounce to be played in the left
speaker, while left to right means sound from the left bounce to be
played in the right speaker.

‘Premix left to right’ is the amount of left sound to be mixed in the
right before any reverb is applied, where $00 id 0% and $FF is 100%.
‘Premix right to left’ does the same thing, but right to left. Setting
both premix to $FF would result in a mono output (if the reverb is
applied symmetric). There may only be one “REV” frame in each tag.

Reverb settings "REV"
Frame size $00 00 0C
Reverb left (ms) $xx xx
Reverb right (ms) $xx xx
Reverb bounces, left $xx
Reverb bounces, right $xx
Reverb feedback, left to left $xx
Reverb feedback, left to right $xx
Reverb feedback, right to right $xx
Reverb feedback, right to left $xx
Premix left to right $xx
Premix right to left $xx

Attached picture

This frame contains a picture directly related to the audio file.
Image format is preferably “PNG” [PNG] or “JPG” [JFIF]. Description
is a short description of the picture, represented as a terminated
textstring. The description has a maximum length of 64 characters,
but may be empty. There may be several pictures attached to one file,
each in their individual “PIC” frame, but only one with the same
content descriptor. There may only be one picture with the picture
type declared as picture type $01 and $02 respectively. There is a
possibility to put only a link to the image file by using the ‘image
format’ “–>” and having a complete URL [URL] instead of picture data.
The use of linked files should however be used restrictively since
there is the risk of separation of files.

Attached picture "PIC"
Frame size $xx xx xx
Text encoding $xx
Image format $xx xx xx
Picture type $xx
Description <textstring> $00 (00)
Picture data <binary data>

Picture type: $00 Other
 $01 32x32 pixels 'file icon' (PNG only)
 $02 Other file icon
 $03 Cover (front)
 $04 Cover (back)
 $05 Leaflet page
 $06 Media (e.g. lable side of CD)
 $07 Lead artist/lead performer/soloist
 $08 Artist/performer
 $09 Conductor
 $0A Band/Orchestra
 $0B Composer
 $0C Lyricist/text writer
 $0D Recording Location
 $0E During recording
 $0F During performance
 $10 Movie/video screen capture
 $11 A bright coloured fish
 $12 Illustration
 $13 Band/artist logotype
 $14 Publisher/Studio logotype

General encapsulated object

In this frame any type of file can be encapsulated. After the header,
‘Frame size’ and ‘Encoding’ follows ‘MIME type’ [MIME] and ‘Filename’
for the encapsulated object, both represented as terminated strings
encoded with ISO 8859-1 [ISO-8859-1]. The filename is case sensitive.
Then follows a content description as terminated string, encoded as
‘Encoding’. The last thing in the frame is the actual object. The
first two strings may be omitted, leaving only their terminations.
MIME type is always an ISO-8859-1 text string. There may be more than
one “GEO” frame in each tag, but only one with the same content
descriptor.

General encapsulated object "GEO"
Frame size $xx xx xx
Text encoding $xx
MIME type <textstring> $00
Filename <textstring> $00 (00)
Content description <textstring> $00 (00)
Encapsulated object <binary data>

Play counter

This is simply a counter of the number of times a file has been
played. The value is increased by one every time the file begins to
play. There may only be one “CNT” frame in each tag. When the counter
reaches all one’s, one byte is inserted in front of the counter thus
making the counter eight bits bigger. The counter must be at least
32-bits long to begin with.

Play counter "CNT"
Frame size $xx xx xx
Counter $xx xx xx xx (xx ...)

Popularimeter

The purpose of this frame is to specify how good an audio file is.
Many interesting applications could be found to this frame such as a
playlist that features better audiofiles more often than others or it
could be used to profile a persons taste and find other ‘good’ files
by comparing people’s profiles. The frame is very simple. It contains
the email address to the user, one rating byte and a four byte play
counter, intended to be increased with one for every time the file is
played. The email is a terminated string. The rating is 1-255 where
1 is worst and 255 is best. 0 is unknown. If no personal counter is
wanted it may be omitted. When the counter reaches all one’s, one
byte is inserted in front of the counter thus making the counter
eight bits bigger in the same away as the play counter (“CNT”).
There may be more than one “POP” frame in each tag, but only one with
the same email address.

Popularimeter "POP"
Frame size $xx xx xx
Email to user <textstring> $00
Rating $xx
Counter $xx xx xx xx (xx ...)

Recommended buffer size

Sometimes the server from which a audio file is streamed is aware of
transmission or coding problems resulting in interruptions in the
audio stream. In these cases, the size of the buffer can be
recommended by the server using this frame. If the ‘embedded info
flag’ is true (1) then this indicates that an ID3 tag with the
maximum size described in ‘Buffer size’ may occur in the audiostream.
In such case the tag should reside between two MPEG [MPEG] frames, if
the audio is MPEG encoded. If the position of the next tag is known,
‘offset to next tag’ may be used. The offset is calculated from the
end of tag in which this frame resides to the first byte of the header
in the next. This field may be omitted. Embedded tags is currently not
recommended since this could render unpredictable behaviour from
present software/hardware. The ‘Buffer size’ should be kept to a
minimum. There may only be one “BUF” frame in each tag.

Recommended buffer size "BUF"
Frame size $xx xx xx
Buffer size $xx xx xx
Embedded info flag %0000000x
Offset to next tag $xx xx xx xx

Encrypted meta frame

This frame contains one or more encrypted frames. This enables
protection of copyrighted information such as pictures and text, that
people might want to pay extra for. Since standardisation of such an
encryption scheme is beyond this document, all “CRM” frames begin with
a terminated string with a URL [URL] containing an email address, or a
link to a location where an email adress can be found, that belongs to
the organisation responsible for this specific encrypted meta frame.

Questions regarding the encrypted frame should be sent to the
indicated email address. If a $00 is found directly after the ‘Frame
size’, the whole frame should be ignored, and preferably be removed.
The ‘Owner identifier’ is then followed by a short content description
and explanation as to why it’s encrypted. After the
‘content/explanation’ description, the actual encrypted block follows.

When an ID3v2 decoder encounters a “CRM” frame, it should send the
datablock to the ‘plugin’ with the corresponding ‘owner identifier’
and expect to receive either a datablock with one or several ID3v2
frames after each other or an error. There may be more than one “CRM”
frames in a tag, but only one with the same ‘owner identifier’.

Encrypted meta frame "CRM"
Frame size $xx xx xx
Owner identifier <textstring> $00 (00)
Content/explanation <textstring> $00 (00)
Encrypted datablock <binary data>

Audio encryption

This frame indicates if the actual audio stream is encrypted, and by
whom. Since standardisation of such encrypion scheme is beyond this
document, all “CRA” frames begin with a terminated string with a
URL containing an email address, or a link to a location where an
email address can be found, that belongs to the organisation
responsible for this specific encrypted audio file. Questions
regarding the encrypted audio should be sent to the email address
specified. If a $00 is found directly after the ‘Frame size’ and the
audiofile indeed is encrypted, the whole file may be considered
useless.

After the ‘Owner identifier’, a pointer to an unencrypted part of the
audio can be specified. The ‘Preview start’ and ‘Preview length’ is
described in frames. If no part is unencrypted, these fields should be
left zeroed. After the ‘preview length’ field follows optionally a
datablock required for decryption of the audio. There may be more than
one “CRA” frames in a tag, but only one with the same ‘Owner
identifier’.

Audio encryption "CRA"
Frame size $xx xx xx
Owner identifier <textstring> $00 (00)
Preview start $xx xx
Preview length $xx xx
Encryption info <binary data>

Linked information

To keep space waste as low as possible this frame may be used to link
information from another ID3v2 tag that might reside in another audio
file or alone in a binary file. It is recommended that this method is
only used when the files are stored on a CD-ROM or other circumstances
when the risk of file seperation is low. The frame contains a frame
identifier, which is the frame that should be linked into this tag, a
URL [URL] field, where a reference to the file where the frame is
given, and additional ID data, if needed. Data should be retrieved
from the first tag found in the file to which this link points. There
may be more than one “LNK” frame in a tag, but only one with the same
contents. A linked frame is to be considered as part of the tag and
has the same restrictions as if it was a physical part of the tag
(i.e. only one “REV” frame allowed, whether it’s linked or not).

Linked information "LNK"
Frame size $xx xx xx
Frame identifier $xx xx xx
URL <textstring> $00 (00)
Additional ID data <textstring(s)>

Frames that may be linked and need no additional data are “IPL”,
“MCI”, “ETC”, “LLT”, “STC”, “RVA”, “EQU”, “REV”, “BUF”, the text
information frames and the URL link frames.

The “TXX”, “PIC”, “GEO”, “CRM” and “CRA” frames may be linked with the
content descriptor as additional ID data.

The “COM”, “SLT” and “ULT” frames may be linked with three bytes of
language descriptor directly followed by a content descriptor as
additional ID data.

The ‘unsynchronisation scheme’

The only purpose of the ‘unsychronisation scheme’ is to make the ID3v2
tag as compatible as possible with existing software. There is no use
in ‘unsynchronising’ tags if the file is only to be processed by new
software. Unsynchronisation may only be made with MPEG 2 layer I, II
and III and MPEG 2.5 files.

Whenever a false synchronisation is found within the tag, one zeroed
byte is inserted after the first false synchronisation byte. The
format of a correct sync that should be altered by ID3 encoders is as
follows:

%11111111 111xxxxx

And should be replaced with:

%11111111 00000000 111xxxxx

This has the side effect that all $FF 00 combinations have to be
altered, so they won’t be affected by the decoding process. Therefore
all the $FF 00 combinations have to be replaced with the $FF 00 00
combination during the unsynchonisation.

To indicate usage of the unsynchronisation, the first bit in ‘ID3
flags’ should be set. This bit should only be set if the tag
contained a, now corrected, false synchronisation. The bit should
only be clear if the tag does not contain any false synchronisations.

Do bear in mind, that if a compression scheme is used by the encoder,
the unsyncronisation scheme should be applied afterwards. When
decoding a compressed, ‘unsyncronised’ file, the ‘unsyncronisation
scheme’ should be parsed first, compression afterwards.

Copyright

Copyright (C) Martin Nilsson 1998. All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that a reference to this document is included on all
such copies and derivative works. However, this document itself may
not be modified in any way and reissued as the original document.

The limited permissions granted above are perpetual and will not be
revoked.

This document and the information contained herein is provided on an
“AS IS” basis and THE AUTHORS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

References

[CDDB] Compact Disc Data Base

<url:http://www.cddb.com>

[ISO-639-2] ISO/FDIS 639-2.
Codes for the representation of names of languages, Part 2: Alpha-3
code. Technical committee / subcommittee: TC 37 / SC 2

[ISO-8859-1] ISO/IEC DIS 8859-1.
8-bit single-byte coded graphic character sets, Part 1: Latin
alphabet No. 1. Technical committee / subcommittee: JTC 1 / SC 2

[ISRC] ISO 3901:1986
International Standard Recording Code (ISRC).
Technical committee / subcommittee: TC 46 / SC 9

[JFIF] JPEG File Interchange Format, version 1.02

<url:http://www.w3.org/Graphics/JPEG/jfif.txt>

[MIME] Freed, N. and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies”,
RFC 2045, November 1996.

<url:ftp://ftp.isi.edu/in-notes/rfc2045.txt>

[MPEG] ISO/IEC 11172-3:1993.
Coding of moving pictures and associated audio for digital storage
media at up to about 1,5 Mbit/s, Part 3: Audio.
Technical committee / subcommittee: JTC 1 / SC 29
and
ISO/IEC 13818-3:1995
Generic coding of moving pictures and associated audio information,
Part 3: Audio.
Technical committee / subcommittee: JTC 1 / SC 29
and
ISO/IEC DIS 13818-3
Generic coding of moving pictures and associated audio information,
Part 3: Audio (Revision of ISO/IEC 13818-3:1995)

[PNG] Portable Network Graphics, version 1.0

<url:http://www.w3.org/TR/REC-png-multi.html>

[UNICODE] ISO/IEC 10646-1:1993.
Universal Multiple-Octet Coded Character Set (UCS), Part 1:
Architecture and Basic Multilingual Plane. Technical committee
/ subcommittee: JTC 1 / SC 2

<url:http://www.unicode.org>

[URL] T. Berners-Lee, L. Masinter & M. McCahill, “Uniform Resource
Locators (URL).”, RFC 1738, December 1994.

<url:ftp://ftp.isi.edu/in-notes/rfc1738.txt>

Appendix

Appendix A - ID3-Tag Specification V1.1

ID3-Tag Specification V1.1 (12 dec 1997) by Michael Mutschler
<amiga2@info2.rus.uni-stuttgart.de>, edited for space and clarity
reasons.

Overview

The ID3-Tag is an information field for MPEG Layer 3 audio files.
Since a standalone MP3 doesn’t provide a method of storing other
information than those directly needed for replay reasons, the
ID3-tag was invented by Eric Kemp in 1996.

A revision from ID3v1 to ID3v1.1 was made by Michael Mutschler to
support track number information is described in A.4.

ID3v1 Implementation

The Information is stored in the last 128 bytes of an MP3. The Tag
has got the following fields, and the offsets given here, are from
0-127.

Field Length Offsets
Tag 3 0-2
Songname 30 3-32
Artist 30 33-62
Album 30 63-92
Year 4 93-96
Comment 30 97-126
Genre 1 127

The string-fields contain ASCII-data, coded in ISO-Latin 1 codepage.
Strings which are smaller than the field length are padded with zero-
bytes.

	Tag: The tag is valid if this field contains the string “TAG”. This

	has to be uppercase!

	Songname: This field contains the title of the MP3 (string as

	above).

Artist: This field contains the artist of the MP3 (string as above).

	Album: this field contains the album where the MP3 comes from

	(string as above).

	Year: this field contains the year when this song has originally

	been released (string as above).

	Comment: this field contains a comment for the MP3 (string as

	above). Revision to this field has been made in ID3v1.1. See
A.4.

	Genre: this byte contains the offset of a genre in a predefined

	list the byte is treated as an unsigned byte. The offset is
starting from 0. See A.3.

Genre List

The following genres is defined in ID3v1

0.Blues
1.Classic Rock
2.Country
3.Dance
4.Disco
5.Funk
6.Grunge
7.Hip-Hop
8.Jazz
9.Metal
10.New Age
11.Oldies
12.Other
13.Pop
14.R&B
15.Rap
16.Reggae
17.Rock
18.Techno
19.Industrial
20.Alternative
21.Ska
22.Death Metal
23.Pranks
24.Soundtrack
25.Euro-Techno
26.Ambient
27.Trip-Hop
28.Vocal
29.Jazz+Funk
30.Fusion
31.Trance
32.Classical
33.Instrumental
34.Acid
35.House
36.Game
37.Sound Clip
38.Gospel
39.Noise
40.AlternRock
41.Bass
42.Soul
43.Punk
44.Space
45.Meditative
46.Instrumental Pop
47.Instrumental Rock
48.Ethnic
49.Gothic
50.Darkwave
51.Techno-Industrial
52.Electronic
53.Pop-Folk
54.Eurodance
55.Dream
56.Southern Rock
57.Comedy
58.Cult
59.Gangsta
60.Top 40
61.Christian Rap
62.Pop/Funk
63.Jungle
64.Native American
65.Cabaret
66.New Wave
67.Psychadelic
68.Rave
69.Showtunes
70.Trailer
71.Lo-Fi
72.Tribal
73.Acid Punk
74.Acid Jazz
75.Polka
76.Retro
77.Musical
78.Rock & Roll
79.Hard Rock

The following genres are Winamp extensions

80.Folk
81.Folk-Rock
82.National Folk
83.Swing
84.Fast Fusion
85.Bebob
86.Latin
87.Revival
88.Celtic
89.Bluegrass
90.Avantgarde
91.Gothic Rock
92.Progressive Rock
93.Psychedelic Rock
94.Symphonic Rock
95.Slow Rock
96.Big Band
97.Chorus
98.Easy Listening
99.Acoustic

100.Humour
101.Speech
102.Chanson
103.Opera
104.Chamber Music
105.Sonata
106.Symphony
107.Booty Bass
108.Primus
109.Porn Groove
110.Satire
111.Slow Jam
112.Club
113.Tango
114.Samba
115.Folklore
116.Ballad
117.Power Ballad
118.Rhythmic Soul
119.Freestyle
120.Duet
121.Punk Rock
122.Drum Solo
123.A capella
124.Euro-House
125.Dance Hall

Track addition - ID3v1.1

In ID3v1.1, Michael Mutschler revised the specification of the
comment field in order to implement the track number. The new format
of the comment field is a 28 character string followed by a mandatory
null ($00) character and the original album tracknumber stored as an
unsigned byte-size integer. In such cases where the 29th byte is not
the null character or when the 30th is a null character, the
tracknumber is to be considered undefined.

Author’s Address

Martin Nilsson
Rydsvägen 246 C. 30
S-584 34 Linköping
Sweden

Email: nilsson at id3.org

Co-authors:

Johan Sundström Email: johan at id3.org

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3 tag version 2.3.0

Status of this document

This document is an informal standard and replaces the ID3v2.2.0
standard [ID3v2]. The informal standard is released so that
implementors could have a set standard before a formal standard is
set. The formal standard will use another version or revision number
if not identical to what is described in this document. The contents
in this document may change for clarifications but never for added or
altered functionallity.

Distribution of this document is unlimited.

Abstract

This document describes the ID3v2.3.0, which is a more developed
version of the ID3v2 informal standard [ID3v2] (version 2.2.0),
evolved from the ID3 tagging system. The ID3v2 offers a flexible way
of storing information about an audio file within itself to determine
its origin and contents. The information may be technical
information, such as equalisation curves, as well as related meta
information, such as title, performer, copyright etc.

	Table of contents

	Conventions in this document

	ID3v2 overview

3.1. ID3v2 header
3.2. ID3v2 extended header
3.3. ID3v2 frames overview

3.3.1. Frame header flags
3.3.2. Default flags

	Declared ID3v2 frames

4.1. Unique file identifier
4.2. Text information frames

4.2.1. Text information frames - details
4.2.2. User defined text information frame

	4.3. URL link frames

	4.3.1. URL link frames - details
4.3.2. User defined URL link frame

4.4. Involved people list
4.5. Music CD Identifier
4.6. Event timing codes
4.7. MPEG location lookup table
4.8. Synced tempo codes
4.9. Unsychronised lyrics/text transcription
4.10. Synchronised lyrics/text
4.11. Comments
4.12. Relative volume adjustment
4.13. Equalisation
4.14. Reverb
4.15. Attached picture
4.16. General encapsulated object
4.17. Play counter
4.18. Popularimeter
4.19. Recommended buffer size
4.20. Audio encryption
4.21. Linked information
4.22. Position synchronisation frame
4.23. Terms of use
4.24. Ownership frame
4.25. Commercial frame
4.26. Encryption method registration
4.27. Group identification registration

4.28. Private frame

	The ‘unsynchronisation scheme’

	Copyright

	References

	Appendix

	Appendix A - Genre List from ID3v1

	Author’s Address

	Conventions in this document

In the examples, text within “” is a text string exactly as it
appears in a file. Numbers preceded with $ are hexadecimal and
numbers preceded with % are binary. $xx is used to indicate a byte
with unknown content. %x is used to indicate a bit with unknown
content. The most significant bit (MSB) of a byte is called ‘bit 7’
and the least significant bit (LSB) is called ‘bit 0’.

A tag is the whole tag described in this document. A frame is a block
of information in the tag. The tag consists of a header, frames and
optional padding. A field is a piece of information; one value, a
string etc. A numeric string is a string that consists of the
characters 0-9 only.

	ID3v2 overview

The two biggest design goals were to be able to implement ID3v2
without disturbing old software too much and that ID3v2 should be
as flexible and expandable as possible.

The first criterion is met by the simple fact that the MPEG [MPEG]
decoding software uses a syncsignal, embedded in the audiostream, to
‘lock on to’ the audio. Since the ID3v2 tag doesn’t contain a valid
syncsignal, no software will attempt to play the tag. If, for any
reason, coincidence make a syncsignal appear within the tag it will
be taken care of by the ‘unsynchronisation scheme’ described in
section 5.

The second criterion has made a more noticeable impact on the design
of the ID3v2 tag. It is constructed as a container for several
information blocks, called frames, whose format need not be known to
the software that encounters them. At the start of every frame there
is an identifier that explains the frames’ format and content, and a
size descriptor that allows software to skip unknown frames.

If a total revision of the ID3v2 tag should be needed, there is a
version number and a size descriptor in the ID3v2 header.

The ID3 tag described in this document is mainly targeted at files
encoded with MPEG-1/2 layer I, MPEG-1/2 layer II, MPEG-1/2 layer III
and MPEG-2.5, but may work with other types of encoded audio.

The bitorder in ID3v2 is most significant bit first (MSB). The
byteorder in multibyte numbers is most significant byte first (e.g.
$12345678 would be encoded $12 34 56 78).

It is permitted to include padding after all the final frame (at the
end of the ID3 tag), making the size of all the frames together
smaller than the size given in the head of the tag. A possible
purpose of this padding is to allow for adding a few additional
frames or enlarge existing frames within the tag without having to
rewrite the entire file. The value of the padding bytes must be $00.

3.1. ID3v2 header

The ID3v2 tag header, which should be the first information in the
file, is 10 bytes as follows:

ID3v2/file identifier “ID3”
ID3v2 version $03 00
ID3v2 flags %abc00000
ID3v2 size 4 * %0xxxxxxx

The first three bytes of the tag are always “ID3” to indicate that
this is an ID3v2 tag, directly followed by the two version bytes. The
first byte of ID3v2 version is it’s major version, while the second
byte is its revision number. In this case this is ID3v2.3.0. All
revisions are backwards compatible while major versions are not. If
software with ID3v2.2.0 and below support should encounter version
three or higher it should simply ignore the whole tag. Version and
revision will never be $FF.

The version is followed by one the ID3v2 flags field, of which
currently only three flags are used.

a - Unsynchronisation

Bit 7 in the ‘ID3v2 flags’ indicates whether or not
unsynchronisation is used (see section 5 for details); a set bit
indicates usage.

b - Extended header

The second bit (bit 6) indicates whether or not the header is
followed by an extended header. The extended header is described in
section 3.2.

c - Experimental indicator

The third bit (bit 5) should be used as an ‘experimental
indicator’. This flag should always be set when the tag is in an
experimental stage.

All the other flags should be cleared. If one of these undefined
flags are set that might mean that the tag is not readable for a
parser that does not know the flags function.

The ID3v2 tag size is encoded with four bytes where the most
significant bit (bit 7) is set to zero in every byte, making a total
of 28 bits. The zeroed bits are ignored, so a 257 bytes long tag is
represented as $00 00 02 01.

The ID3v2 tag size is the size of the complete tag after
unsychronisation, including padding, excluding the header but not
excluding the extended header (total tag size - 10). Only 28 bits
(representing up to 256MB) are used in the size description to avoid
the introducuction of ‘false syncsignals’.

	An ID3v2 tag can be detected with the following pattern:

	$49 44 33 yy yy xx zz zz zz zz

Where yy is less than $FF, xx is the ‘flags’ byte and zz is less than
$80.

3.2. ID3v2 extended header

The extended header contains information that is not vital to the
correct parsing of the tag information, hence the extended header is
optional.

Extended header size $xx xx xx xx
Extended Flags $xx xx
Size of padding $xx xx xx xx

Where the ‘Extended header size’, currently 6 or 10 bytes, excludes
itself. The ‘Size of padding’ is simply the total tag size excluding
the frames and the headers, in other words the padding. The extended
header is considered separate from the header proper, and as such is
subject to unsynchronisation.

The extended flags are a secondary flag set which describes further
attributes of the tag. These attributes are currently defined as
follows

%x0000000 00000000

x - CRC data present

If this flag is set four bytes of CRC-32 data is appended to the
extended header. The CRC should be calculated before
unsynchronisation on the data between the extended header and the
padding, i.e. the frames and only the frames.

Total frame CRC $xx xx xx xx

3.3. ID3v2 frame overview

As the tag consists of a tag header and a tag body with one or more
frames, all the frames consists of a frame header followed by one or
more fields containing the actual information. The layout of the
frame header:

Frame ID $xx xx xx xx (four characters)
Size $xx xx xx xx
Flags $xx xx

The frame ID made out of the characters capital A-Z and 0-9.
Identifiers beginning with “X”, “Y” and “Z” are for experimental use
and free for everyone to use, without the need to set the
experimental bit in the tag header. Have in mind that someone else
might have used the same identifier as you. All other identifiers are
either used or reserved for future use.

The frame ID is followed by a size descriptor, making a total header
size of ten bytes in every frame. The size is calculated as frame
size excluding frame header (frame size - 10).

In the frame header the size descriptor is followed by two flags
bytes. These flags are described in section 3.3.1.

There is no fixed order of the frames’ appearance in the tag,
although it is desired that the frames are arranged in order of
significance concerning the recognition of the file. An example of
such order: UFID, TIT2, MCDI, TRCK ...

A tag must contain at least one frame. A frame must be at least 1
byte big, excluding the header.

If nothing else is said a string is represented as ISO-8859-1
[ISO-8859-1] characters in the range $20 - $FF. Such strings are
represented as <text string>, or <full text string> if newlines are
allowed, in the frame descriptions. All Unicode strings [UNICODE] use
16-bit unicode 2.0 (ISO/IEC 10646-1:1993, UCS-2). Unicode strings
must begin with the Unicode BOM ($FF FE or $FE FF) to identify the
byte order.

All numeric strings and URLs [URL] are always encoded as ISO-8859-1.
Terminated strings are terminated with $00 if encoded with ISO-8859-1
and $00 00 if encoded as unicode. If nothing else is said newline
character is forbidden. In ISO-8859-1 a new line is represented, when
allowed, with $0A only. Frames that allow different types of text
encoding have a text encoding description byte directly after the
frame size. If ISO-8859-1 is used this byte should be $00, if Unicode
is used it should be $01. Strings dependent on encoding is
represented as <text string according to encoding>, or <full text
string according to encoding> if newlines are allowed. Any empty
Unicode strings which are NULL-terminated may have the Unicode BOM
followed by a Unicode NULL ($FF FE 00 00 or $FE FF 00 00).

The three byte language field is used to describe the language of the
frame’s content, according to ISO-639-2 [ISO-639-2].

All URLs [URL] may be relative, e.g. “picture.png”, ”../doc.txt”.

If a frame is longer than it should be, e.g. having more fields than
specified in this document, that indicates that additions to the
frame have been made in a later version of the ID3v2 standard. This
is reflected by the revision number in the header of the tag.

3.3.1. Frame header flags

In the frame header the size descriptor is followed by two flags
bytes. All unused flags must be cleared. The first byte is for
‘status messages’ and the second byte is for encoding purposes. If an
unknown flag is set in the first byte the frame may not be changed
without the bit cleared. If an unknown flag is set in the second byte
it is likely to not be readable. The flags field is defined as
follows.

%abc00000 %ijk00000

a - Tag alter preservation

This flag tells the software what to do with this frame if it is
unknown and the tag is altered in any way. This applies to all
kinds of alterations, including adding more padding and reordering
the frames.

0 Frame should be preserved.
1 Frame should be discarded.

b - File alter preservation

This flag tells the software what to do with this frame if it is
unknown and the file, excluding the tag, is altered. This does not
apply when the audio is completely replaced with other audio data.

0 Frame should be preserved.
1 Frame should be discarded.

c - Read only

This flag, if set, tells the software that the contents of this
frame is intended to be read only. Changing the contents might
break something, e.g. a signature. If the contents are changed,
without knowledge in why the frame was flagged read only and
without taking the proper means to compensate, e.g. recalculating
the signature, the bit should be cleared.

i - Compression

This flag indicates whether or not the frame is compressed.

0 Frame is not compressed.
1 Frame is compressed using zlib [zlib] with 4 bytes for

‘decompressed size’ appended to the frame header.

j - Encryption

This flag indicates wether or not the frame is enrypted. If set
one byte indicating with which method it was encrypted will be
appended to the frame header. See section 4.26. for more
information about encryption method registration.

0 Frame is not encrypted.
1 Frame is encrypted.

k - Grouping identity

This flag indicates whether or not this frame belongs in a group
with other frames. If set a group identifier byte is added to the
frame header. Every frame with the same group identifier belongs
to the same group.

0 Frame does not contain group information
1 Frame contains group information

Some flags indicates that the frame header is extended with
additional information. This information will be added to the frame
header in the same order as the flags indicating the additions. I.e.
the four bytes of decompressed size will preceed the encryption
method byte. These additions to the frame header, while not included
in the frame header size but are included in the ‘frame size’ field,
are not subject to encryption or compression.

3.3.2. Default flags

The default settings for the frames described in this document can be
divided into the following classes. The flags may be set differently
if found more suitable by the software.

	Discarded if tag is altered, discarded if file is altered.

None.

	Discarded if tag is altered, preserved if file is altered.

None.

	Preserved if tag is altered, discarded if file is altered.

AENC, ETCO, EQUA, MLLT, POSS, SYLT, SYTC, RVAD, TENC, TLEN, TSIZ

	Preserved if tag is altered, preserved if file is altered.

The rest of the frames.

	Declared ID3v2 frames

The following frames are declared in this draft.

4.21 AENC Audio encryption
4.15 APIC Attached picture

4.11 COMM Comments
4.25 COMR Commercial frame

4.26 ENCR Encryption method registration
4.13 EQUA Equalization
4.6 ETCO Event timing codes

4.16 GEOB General encapsulated object
4.27 GRID Group identification registration

4.4 IPLS Involved people list

4.21 LINK Linked information

4.5 MCDI Music CD identifier
4.7 MLLT MPEG location lookup table

4.24 OWNE Ownership frame

4.28. PRIV Private frame
4.17 PCNT Play counter
4.18 POPM Popularimeter
4.22 POSS Position synchronisation frame

4.19 RBUF Recommended buffer size
4.12 RVAD Relative volume adjustment
4.14 RVRB Reverb

4.10 SYLT Synchronized lyric/text
4.8 SYTC Synchronized tempo codes

4.2.1 TALB Album/Movie/Show title
4.2.1 TBPM BPM (beats per minute)
4.2.1 TCOM Composer
4.2.1 TCON Content type
4.2.1 TCOP Copyright message
4.2.1 TDAT Date
4.2.1 TDLY Playlist delay
4.2.1 TENC Encoded by
4.2.1 TEXT Lyricist/Text writer
4.2.1 TFLT File type
4.2.1 TIME Time
4.2.1 TIT1 Content group description
4.2.1 TIT2 Title/songname/content description
4.2.1 TIT3 Subtitle/Description refinement
4.2.1 TKEY Initial key
4.2.1 TLAN Language(s)
4.2.1 TLEN Length
4.2.1 TMED Media type
4.2.1 TOAL Original album/movie/show title
4.2.1 TOFN Original filename
4.2.1 TOLY Original lyricist(s)/text writer(s)
4.2.1 TOPE Original artist(s)/performer(s)
4.2.1 TORY Original release year
4.2.1 TOWN File owner/licensee
4.2.1 TPE1 Lead performer(s)/Soloist(s)
4.2.1 TPE2 Band/orchestra/accompaniment
4.2.1 TPE3 Conductor/performer refinement
4.2.1 TPE4 Interpreted, remixed, or otherwise modified by
4.2.1 TPOS Part of a set
4.2.1 TPUB Publisher
4.2.1 TRCK Track number/Position in set
4.2.1 TRDA Recording dates
4.2.1 TRSN Internet radio station name
4.2.1 TRSO Internet radio station owner
4.2.1 TSIZ Size
4.2.1 TSRC ISRC (international standard recording code)
4.2.1 TSSE Software/Hardware and settings used for encoding
4.2.1 TYER Year
4.2.2 TXXX User defined text information frame

4.1 UFID Unique file identifier
4.23 USER Terms of use
4.9 USLT Unsychronized lyric/text transcription

4.3.1 WCOM Commercial information
4.3.1 WCOP Copyright/Legal information
4.3.1 WOAF Official audio file webpage
4.3.1 WOAR Official artist/performer webpage
4.3.1 WOAS Official audio source webpage
4.3.1 WORS Official internet radio station homepage
4.3.1 WPAY Payment
4.3.1 WPUB Publishers official webpage
4.3.2 WXXX User defined URL link frame

4.1. Unique file identifier

This frame’s purpose is to be able to identify the audio file in a
database that may contain more information relevant to the content.
Since standardisation of such a database is beyond this document, all
frames begin with a null-terminated string with a URL [URL]
containing an email address, or a link to a location where an email
address can be found, that belongs to the organisation responsible
for this specific database implementation. Questions regarding the
database should be sent to the indicated email address. The URL
should not be used for the actual database queries. The string
“http://www.id3.org/dummy/ufid.html” should be used for tests.
Software that isn’t told otherwise may safely remove such frames. The
‘Owner identifier’ must be non-empty (more than just a termination).
The ‘Owner identifier’ is then followed by the actual identifier,
which may be up to 64 bytes. There may be more than one “UFID” frame
in a tag, but only one with the same ‘Owner identifier’.

<Header for ‘Unique file identifier’, ID: “UFID”>
Owner identifier <text string> $00
Identifier <up to 64 bytes binary data>

4.2. Text information frames

The text information frames are the most important frames, containing
information like artist, album and more. There may only be one text
information frame of its kind in an tag. If the textstring is
followed by a termination ($00 (00)) all the following information
should be ignored and not be displayed. All text frame identifiers
begin with “T”. Only text frame identifiers begin with “T”, with the
exception of the “TXXX” frame. All the text information frames have
the following format:

<Header for ‘Text information frame’, ID: “T000” - “TZZZ”,
excluding “TXXX” described in 4.2.2.>
Text encoding $xx
Information <text string according to encoding>

4.2.1. Text information frames - details

	TALB

	The ‘Album/Movie/Show title’ frame is intended for the title of the
recording(/source of sound) which the audio in the file is taken
from.

	TBPM

	The ‘BPM’ frame contains the number of beats per minute in the
mainpart of the audio. The BPM is an integer and represented as a
numerical string.

	TCOM

	The ‘Composer(s)’ frame is intended for the name of the composer(s).
They are seperated with the “/” character.

	TCON

	The ‘Content type’, which previously was stored as a one byte numeric
value only, is now a numeric string. You may use one or several of
the types as ID3v1.1 did or, since the category list would be
impossible to maintain with accurate and up to date categories,
define your own.

References to the ID3v1 genres can be made by, as first byte, enter
“(” followed by a number from the genres list (appendix A.) and
ended with a ”)” character. This is optionally followed by a
refinement, e.g. “(21)” or “(4)Eurodisco”. Several references can be
made in the same frame, e.g. “(51)(39)”. If the refinement should
begin with a “(” character it should be replaced with “((”, e.g. “((I
can figure out any genre)” or “(55)((I think...)”. The following new
content types is defined in ID3v2 and is implemented in the same way
as the numerig content types, e.g. “(RX)”.

RX Remix
CR Cover

	TCOP

	The ‘Copyright message’ frame, which must begin with a year and a
space character (making five characters), is intended for the
copyright holder of the original sound, not the audio file itself.
The absence of this frame means only that the copyright information
is unavailable or has been removed, and must not be interpreted to
mean that the sound is public domain. Every time this field is
displayed the field must be preceded with “Copyright ” (C) ” ”, where
(C) is one character showing a C in a circle.

	TDAT

	The ‘Date’ frame is a numeric string in the DDMM format containing
the date for the recording. This field is always four characters
long.

	TDLY

	The ‘Playlist delay’ defines the numbers of milliseconds of silence
between every song in a playlist. The player should use the “ETC”
frame, if present, to skip initial silence and silence at the end of
the audio to match the ‘Playlist delay’ time. The time is represented
as a numeric string.

	TENC

	The ‘Encoded by’ frame contains the name of the person or
organisation that encoded the audio file. This field may contain a
copyright message, if the audio file also is copyrighted by the
encoder.

	TEXT

	The ‘Lyricist(s)/Text writer(s)’ frame is intended for the writer(s)
of the text or lyrics in the recording. They are seperated with the
“/” character.

	TFLT

	The ‘File type’ frame indicates which type of audio this tag defines.
The following type and refinements are defined:

	MPG MPEG Audio

	

	
/1
	MPEG 1/2 layer I

	
/2
	MPEG 1/2 layer II

	
/3
	MPEG 1/2 layer III

/2.5 MPEG 2.5
/AAC Advanced audio compression

VQF Transform-domain Weighted Interleave Vector Quantization
PCM Pulse Code Modulated audio

but other types may be used, not for these types though. This is used
in a similar way to the predefined types in the “TMED” frame, but
without parentheses. If this frame is not present audio type is
assumed to be “MPG”.

	TIME

	The ‘Time’ frame is a numeric string in the HHMM format containing
the time for the recording. This field is always four characters
long.

	TIT1

	The ‘Content group description’ frame is used if the sound belongs to
a larger category of sounds/music. For example, classical music is
often sorted in different musical sections (e.g. “Piano Concerto”,
“Weather - Hurricane”).

	TIT2

	The ‘Title/Songname/Content description’ frame is the actual name of
the piece (e.g. “Adagio”, “Hurricane Donna”).

	TIT3

	The ‘Subtitle/Description refinement’ frame is used for information
directly related to the contents title (e.g. “Op. 16” or “Performed
live at Wembley”).

	TKEY

	The ‘Initial key’ frame contains the musical key in which the sound
starts. It is represented as a string with a maximum length of three
characters. The ground keys are represented with “A”,”B”,”C”,”D”,”E”,
“F” and “G” and halfkeys represented with “b” and “#”. Minor is
represented as “m”. Example “Cbm”. Off key is represented with an “o”
only.

	TLAN

	The ‘Language(s)’ frame should contain the languages of the text or
lyrics spoken or sung in the audio. The language is represented with
three characters according to ISO-639-2. If more than one language is
used in the text their language codes should follow according to
their usage.

	TLEN

	The ‘Length’ frame contains the length of the audiofile in
milliseconds, represented as a numeric string.

	TMED

	The ‘Media type’ frame describes from which media the sound
originated. This may be a text string or a reference to the
predefined media types found in the list below. References are made
within “(” and ”)” and are optionally followed by a text refinement,
e.g. “(MC) with four channels”. If a text refinement should begin
with a “(” character it should be replaced with “((” in the same way
as in the “TCO” frame. Predefined refinements is appended after the
media type, e.g. “(CD/A)” or “(VID/PAL/VHS)”.

	DIG Other digital media

	

	
/A
	Analog transfer from media

	ANA Other analog media

	

	
/WAC
	Wax cylinder

	
/8CA
	8-track tape cassette

	CD CD

	

	
/A
	Analog transfer from media

	
/DD
	DDD

	
/AD
	ADD

	
/AA
	AAD

	LD Laserdisc

	

	
/A
	Analog transfer from media

	TT Turntable records

	

	
/33
	33.33 rpm

	
/45
	45 rpm

	
/71
	71.29 rpm

	
/76
	76.59 rpm

	
/78
	78.26 rpm

	
/80
	80 rpm

	MD MiniDisc

	

	
/A
	Analog transfer from media

	DAT DAT

	

	
/A
	Analog transfer from media

	
/1
	standard, 48 kHz/16 bits, linear

	
/2
	mode 2, 32 kHz/16 bits, linear

	
/3
	mode 3, 32 kHz/12 bits, nonlinear, low speed

	
/4
	mode 4, 32 kHz/12 bits, 4 channels

	
/5
	mode 5, 44.1 kHz/16 bits, linear

	
/6
	mode 6, 44.1 kHz/16 bits, ‘wide track’ play

	DCC DCC

	

	
/A
	Analog transfer from media

	DVD DVD

	

	
/A
	Analog transfer from media

	TV Television

	

	
/PAL
	PAL

	
/NTSC
	NTSC

	
/SECAM
	SECAM

	VID Video

	

	
/PAL
	PAL

	
/NTSC
	NTSC

	
/SECAM
	SECAM

	
/VHS
	VHS

	
/SVHS
	S-VHS

	
/BETA
	BETAMAX

	RAD Radio

	

	
/FM
	FM

	
/AM
	AM

	
/LW
	LW

	
/MW
	MW

	TEL Telephone

	

	
/I
	ISDN

	MC MC (normal cassette)

	

	
/4
	4.75 cm/s (normal speed for a two sided cassette)

	
/9
	9.5 cm/s

	
/I
	Type I cassette (ferric/normal)

	
/II
	Type II cassette (chrome)

	
/III
	Type III cassette (ferric chrome)

	
/IV
	Type IV cassette (metal)

	REE Reel

	

	
/9
	9.5 cm/s

	
/19
	19 cm/s

	
/38
	38 cm/s

	
/76
	76 cm/s

	
/I
	Type I cassette (ferric/normal)

	
/II
	Type II cassette (chrome)

	
/III
	Type III cassette (ferric chrome)

	
/IV
	Type IV cassette (metal)

	TOAL

	The ‘Original album/movie/show title’ frame is intended for the title
of the original recording (or source of sound), if for example the
music in the file should be a cover of a previously released song.

	TOFN

	The ‘Original filename’ frame contains the preferred filename for the
file, since some media doesn’t allow the desired length of the
filename. The filename is case sensitive and includes its suffix.

	TOLY

	The ‘Original lyricist(s)/text writer(s)’ frame is intended for the
text writer(s) of the original recording, if for example the music in
the file should be a cover of a previously released song. The text
writers are seperated with the “/” character.

	TOPE

	The ‘Original artist(s)/performer(s)’ frame is intended for the
performer(s) of the original recording, if for example the music in
the file should be a cover of a previously released song. The
performers are seperated with the “/” character.

	TORY

	The ‘Original release year’ frame is intended for the year when the
original recording, if for example the music in the file should be a
cover of a previously released song, was released. The field is
formatted as in the “TYER” frame.

	TOWN

	The ‘File owner/licensee’ frame contains the name of the owner or
licensee of the file and it’s contents.

	TPE1

	The ‘Lead artist(s)/Lead performer(s)/Soloist(s)/Performing group’ is
used for the main artist(s). They are seperated with the “/”
character.

	TPE2

	The ‘Band/Orchestra/Accompaniment’ frame is used for additional
information about the performers in the recording.

	TPE3

	The ‘Conductor’ frame is used for the name of the conductor.

	TPE4

	The ‘Interpreted, remixed, or otherwise modified by’ frame contains
more information about the people behind a remix and similar
interpretations of another existing piece.

	TPOS

	The ‘Part of a set’ frame is a numeric string that describes which
part of a set the audio came from. This frame is used if the source
described in the “TALB” frame is divided into several mediums, e.g. a
double CD. The value may be extended with a “/” character and a
numeric string containing the total number of parts in the set. E.g.
“1/2”.

	TPUB

	The ‘Publisher’ frame simply contains the name of the label or
publisher.

	TRCK

	The ‘Track number/Position in set’ frame is a numeric string
containing the order number of the audio-file on its original
recording. This may be extended with a “/” character and a numeric
string containing the total numer of tracks/elements on the original
recording. E.g. “4/9”.

	TRDA

	The ‘Recording dates’ frame is a intended to be used as complement to
the “TYER”, “TDAT” and “TIME” frames. E.g. “4th-7th June, 12th June”
in combination with the “TYER” frame.

	TRSN

	The ‘Internet radio station name’ frame contains the name of the
internet radio station from which the audio is streamed.

	TRSO

	The ‘Internet radio station owner’ frame contains the name of the
owner of the internet radio station from which the audio is
streamed.

	TSIZ

	The ‘Size’ frame contains the size of the audiofile in bytes,
excluding the ID3v2 tag, represented as a numeric string.

	TSRC

	The ‘ISRC’ frame should contain the International Standard Recording
Code [ISRC] (12 characters).

	TSSE

	The ‘Software/Hardware and settings used for encoding’ frame
includes the used audio encoder and its settings when the file was
encoded. Hardware refers to hardware encoders, not the computer on
which a program was run.

	TYER

	The ‘Year’ frame is a numeric string with a year of the recording.
This frames is always four characters long (until the year 10000).

4.2.2. User defined text information frame

This frame is intended for one-string text information concerning the
audiofile in a similar way to the other “T”-frames. The frame body
consists of a description of the string, represented as a terminated
string, followed by the actual string. There may be more than one
“TXXX” frame in each tag, but only one with the same description.

<Header for ‘User defined text information frame’, ID: “TXXX”>
Text encoding $xx
Description <text string according to encoding> $00 (00)
Value <text string according to encoding>

4.3. URL link frames

With these frames dynamic data such as webpages with touring
information, price information or plain ordinary news can be added to
the tag. There may only be one URL [URL] link frame of its kind in an
tag, except when stated otherwise in the frame description. If the
textstring is followed by a termination ($00 (00)) all the following
information should be ignored and not be displayed. All URL link
frame identifiers begins with “W”. Only URL link frame identifiers
begins with “W”. All URL link frames have the following format:

<Header for ‘URL link frame’, ID: “W000” - “WZZZ”, excluding “WXXX”
described in 4.3.2.>
URL <text string>

4.3.1. URL link frames - details

	WCOM

	The ‘Commercial information’ frame is a URL pointing at a webpage
with information such as where the album can be bought. There may be
more than one “WCOM” frame in a tag, but not with the same content.

	WCOP

	The ‘Copyright/Legal information’ frame is a URL pointing at a
webpage where the terms of use and ownership of the file is
described.

	WOAF

	The ‘Official audio file webpage’ frame is a URL pointing at a file
specific webpage.

	WOAR

	The ‘Official artist/performer webpage’ frame is a URL pointing at
the artists official webpage. There may be more than one “WOAR” frame
in a tag if the audio contains more than one performer, but not with
the same content.

	WOAS

	The ‘Official audio source webpage’ frame is a URL pointing at the
official webpage for the source of the audio file, e.g. a movie.

	WORS

	The ‘Official internet radio station homepage’ contains a URL
pointing at the homepage of the internet radio station.

	WPAY

	The ‘Payment’ frame is a URL pointing at a webpage that will handle
the process of paying for this file.

	WPUB

	The ‘Publishers official webpage’ frame is a URL pointing at the
official wepage for the publisher.

4.3.2. User defined URL link frame

This frame is intended for URL [URL] links concerning the audiofile
in a similar way to the other “W”-frames. The frame body consists
of a description of the string, represented as a terminated string,
followed by the actual URL. The URL is always encoded with ISO-8859-1
[ISO-8859-1]. There may be more than one “WXXX” frame in each tag,
but only one with the same description.

<Header for ‘User defined URL link frame’, ID: “WXXX”>
Text encoding $xx
Description <text string according to encoding> $00 (00)
URL <text string>

4.4. Involved people list

Since there might be a lot of people contributing to an audio file in
various ways, such as musicians and technicians, the ‘Text
information frames’ are often insufficient to list everyone involved
in a project. The ‘Involved people list’ is a frame containing the
names of those involved, and how they were involved. The body simply
contains a terminated string with the involvement directly followed
by a terminated string with the involvee followed by a new
involvement and so on. There may only be one “IPLS” frame in each
tag.

<Header for ‘Involved people list’, ID: “IPLS”>
Text encoding $xx
People list strings <text strings according to encoding>

4.5. Music CD identifier

This frame is intended for music that comes from a CD, so that the CD
can be identified in databases such as the CDDB [CDDB]. The frame
consists of a binary dump of the Table Of Contents, TOC, from the CD,
which is a header of 4 bytes and then 8 bytes/track on the CD plus 8
bytes for the ‘lead out’ making a maximum of 804 bytes. The offset to
the beginning of every track on the CD should be described with a
four bytes absolute CD-frame address per track, and not with absolute
time. This frame requires a present and valid “TRCK” frame, even if
the CD’s only got one track. There may only be one “MCDI” frame in
each tag.

<Header for ‘Music CD identifier’, ID: “MCDI”>
CD TOC <binary data>

4.6. Event timing codes

This frame allows synchronisation with key events in a song or sound.
The header is:

<Header for ‘Event timing codes’, ID: “ETCO”>
Time stamp format $xx

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Abolute time means that every stamp contains the time from the
beginning of the file.

Followed by a list of key events in the following format:

Type of event $xx
Time stamp $xx (xx ...)

The ‘Time stamp’ is set to zero if directly at the beginning of the
sound or after the previous event. All events should be sorted in
chronological order. The type of event is as follows:

$00 padding (has no meaning)
$01 end of initial silence
$02 intro start
$03 mainpart start
$04 outro start
$05 outro end
$06 verse start
$07 refrain start
$08 interlude start
$09 theme start
$0A variation start
$0B key change
$0C time change
$0D momentary unwanted noise (Snap, Crackle & Pop)
$0E sustained noise
$0F sustained noise end
$10 intro end
$11 mainpart end
$12 verse end
$13 refrain end
$14 theme end

$15-$DF reserved for future use

$E0-$EF not predefined sync 0-F

$F0-$FC reserved for future use

$FD audio end (start of silence)
$FE audio file ends
$FF one more byte of events follows (all the following bytes with

the value $FF have the same function)

Terminating the start events such as “intro start” is not required.
The ‘Not predefined sync’s ($E0-EF) are for user events. You might
want to synchronise your music to something, like setting of an
explosion on-stage, turning on your screensaver etc.

There may only be one “ETCO” frame in each tag.

4.7. MPEG location lookup table

To increase performance and accuracy of jumps within a MPEG [MPEG]
audio file, frames with timecodes in different locations in the file
might be useful. The ID3v2 frame includes references that the
software can use to calculate positions in the file. After the frame
header is a descriptor of how much the ‘frame counter’ should
increase for every reference. If this value is two then the first
reference points out the second frame, the 2nd reference the 4th
frame, the 3rd reference the 6th frame etc. In a similar way the
‘bytes between reference’ and ‘milliseconds between reference’ points
out bytes and milliseconds respectively.

Each reference consists of two parts; a certain number of bits, as
defined in ‘bits for bytes deviation’, that describes the difference
between what is said in ‘bytes between reference’ and the reality and
a certain number of bits, as defined in ‘bits for milliseconds
deviation’, that describes the difference between what is said in
‘milliseconds between reference’ and the reality. The number of bits
in every reference, i.e. ‘bits for bytes deviation’+’bits for
milliseconds deviation’, must be a multiple of four. There may only
be one “MLLT” frame in each tag.

<Header for ‘Location lookup table’, ID: “MLLT”>
MPEG frames between reference $xx xx
Bytes between reference $xx xx xx
Milliseconds between reference $xx xx xx
Bits for bytes deviation $xx
Bits for milliseconds dev. $xx

Then for every reference the following data is included;

Deviation in bytes %xxx....
Deviation in milliseconds %xxx....

4.8. Synchronised tempo codes

For a more accurate description of the tempo of a musical piece this
frame might be used. After the header follows one byte describing
which time stamp format should be used. Then follows one or more
tempo codes. Each tempo code consists of one tempo part and one time
part. The tempo is in BPM described with one or two bytes. If the
first byte has the value $FF, one more byte follows, which is added
to the first giving a range from 2 - 510 BPM, since $00 and $01 is
reserved. $00 is used to describe a beat-free time period, which is
not the same as a music-free time period. $01 is used to indicate one
single beat-stroke followed by a beat-free period.

The tempo descriptor is followed by a time stamp. Every time the
tempo in the music changes, a tempo descriptor may indicate this for
the player. All tempo descriptors should be sorted in chronological
order. The first beat-stroke in a time-period is at the same time as
the beat description occurs. There may only be one “SYTC” frame in
each tag.

<Header for ‘Synchronised tempo codes’, ID: “SYTC”>
Time stamp format $xx
Tempo data <binary data>

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Abolute time means that every stamp contains the time from the
beginning of the file.

4.9. Unsychronised lyrics/text transcription

This frame contains the lyrics of the song or a text transcription of
other vocal activities. The head includes an encoding descriptor and
a content descriptor. The body consists of the actual text. The
‘Content descriptor’ is a terminated string. If no descriptor is
entered, ‘Content descriptor’ is $00 (00) only. Newline characters
are allowed in the text. There may be more than one ‘Unsynchronised
lyrics/text transcription’ frame in each tag, but only one with the
same language and content descriptor.

<Header for ‘Unsynchronised lyrics/text transcription’, ID: “USLT”>
Text encoding $xx
Language $xx xx xx
Content descriptor <text string according to encoding> $00 (00)
Lyrics/text <full text string according to encoding>

4.10. Synchronised lyrics/text

This is another way of incorporating the words, said or sung lyrics,
in the audio file as text, this time, however, in sync with the
audio. It might also be used to describing events e.g. occurring on a
stage or on the screen in sync with the audio. The header includes a
content descriptor, represented with as terminated textstring. If no
descriptor is entered, ‘Content descriptor’ is $00 (00) only.

<Header for ‘Synchronised lyrics/text’, ID: “SYLT”>
Text encoding $xx
Language $xx xx xx
Time stamp format $xx
Content type $xx
Content descriptor <text string according to encoding> $00 (00)

	Encoding: $00 ISO-8859-1 [ISO-8859-1] character set is used => $00

	
is sync identifier.

	$01 Unicode [UNICODE] character set is used => $00 00 is

	sync identifier.

	Content type: $00 is other

	$01 is lyrics
$02 is text transcription
$03 is movement/part name (e.g. “Adagio”)
$04 is events (e.g. “Don Quijote enters the stage”)
$05 is chord (e.g. “Bb F Fsus”)
$06 is trivia/’pop up’ information

Time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Abolute time means that every stamp contains the time from the
beginning of the file.

The text that follows the frame header differs from that of the
unsynchronised lyrics/text transcription in one major way. Each
syllable (or whatever size of text is considered to be convenient by
the encoder) is a null terminated string followed by a time stamp
denoting where in the sound file it belongs. Each sync thus has the
following structure:

Terminated text to be synced (typically a syllable)
Sync identifier (terminator to above string) $00 (00)
Time stamp $xx (xx ...)

The ‘time stamp’ is set to zero or the whole sync is omitted if
located directly at the beginning of the sound. All time stamps
should be sorted in chronological order. The sync can be considered
as a validator of the subsequent string.

Newline ($0A) characters are allowed in all “SYLT” frames and should
be used after every entry (name, event etc.) in a frame with the
content type $03 - $04.

A few considerations regarding whitespace characters: Whitespace
separating words should mark the beginning of a new word, thus
occurring in front of the first syllable of a new word. This is also
valid for new line characters. A syllable followed by a comma should
not be broken apart with a sync (both the syllable and the comma
should be before the sync).

An example: The “USLT” passage

“Strangers in the night” $0A “Exchanging glances”

would be “SYLT” encoded as:

“Strang” $00 xx xx “ers” $00 xx xx ” in” $00 xx xx ” the” $00 xx xx
” night” $00 xx xx 0A “Ex” $00 xx xx “chang” $00 xx xx “ing” $00 xx
xx “glan” $00 xx xx “ces” $00 xx xx

There may be more than one “SYLT” frame in each tag, but only one
with the same language and content descriptor.

4.11. Comments

This frame is indended for any kind of full text information that
does not fit in any other frame. It consists of a frame header
followed by encoding, language and content descriptors and is ended
with the actual comment as a text string. Newline characters are
allowed in the comment text string. There may be more than one
comment frame in each tag, but only one with the same language and
content descriptor.

<Header for ‘Comment’, ID: “COMM”>
Text encoding $xx
Language $xx xx xx
Short content descrip. <text string according to encoding> $00 (00)
The actual text <full text string according to encoding>

4.12. Relative volume adjustment

This is a more subjective function than the previous ones. It allows
the user to say how much he wants to increase/decrease the volume on
each channel while the file is played. The purpose is to be able to
align all files to a reference volume, so that you don’t have to
change the volume constantly. This frame may also be used to balance
adjust the audio. If the volume peak levels are known then this could
be described with the ‘Peak volume right’ and ‘Peak volume left’
field. If Peakvolume is not known these fields could be left zeroed
or, if no other data follows, be completely omitted. There may only
be one “RVAD” frame in each tag.

<Header for ‘Relative volume adjustment’, ID: “RVAD”>
Increment/decrement %00xxxxxx
Bits used for volume descr. $xx
Relative volume change, right $xx xx (xx ...)
Relative volume change, left $xx xx (xx ...)
Peak volume right $xx xx (xx ...)
Peak volume left $xx xx (xx ...)

In the increment/decrement field bit 0 is used to indicate the right
channel and bit 1 is used to indicate the left channel. 1 is
increment and 0 is decrement.

The ‘bits used for volume description’ field is normally $10 (16
bits) for MPEG 2 layer I, II and III [MPEG] and MPEG 2.5. This value
may not be $00. The volume is always represented with whole bytes,
padded in the beginning (highest bits) when ‘bits used for volume
description’ is not a multiple of eight.

This datablock is then optionally followed by a volume definition for
the left and right back channels. If this information is appended to
the frame the first two channels will be treated as front channels.
In the increment/decrement field bit 2 is used to indicate the right
back channel and bit 3 for the left back channel.

Relative volume change, right back $xx xx (xx ...)
Relative volume change, left back $xx xx (xx ...)
Peak volume right back $xx xx (xx ...)
Peak volume left back $xx xx (xx ...)

If the center channel adjustment is present the following is appended
to the existing frame, after the left and right back channels. The
center channel is represented by bit 4 in the increase/decrease
field.

Relative volume change, center $xx xx (xx ...)
Peak volume center $xx xx (xx ...)

If the bass channel adjustment is present the following is appended
to the existing frame, after the center channel. The bass channel is
represented by bit 5 in the increase/decrease field.

Relative volume change, bass $xx xx (xx ...)
Peak volume bass $xx xx (xx ...)

4.13. Equalisation

This is another subjective, alignment frame. It allows the user to
predefine an equalisation curve within the audio file. There may only
be one “EQUA” frame in each tag.

<Header of ‘Equalisation’, ID: “EQUA”>
Adjustment bits $xx

The ‘adjustment bits’ field defines the number of bits used for
representation of the adjustment. This is normally $10 (16 bits) for
MPEG 2 layer I, II and III [MPEG] and MPEG 2.5. This value may not be
$00.

This is followed by 2 bytes + (‘adjustment bits’ rounded up to the
nearest byte) for every equalisation band in the following format,
giving a frequency range of 0 - 32767Hz:

Increment/decrement %x (MSB of the Frequency)
Frequency (lower 15 bits)
Adjustment $xx (xx ...)

The increment/decrement bit is 1 for increment and 0 for decrement.
The equalisation bands should be ordered increasingly with reference
to frequency. All frequencies don’t have to be declared. The
equalisation curve in the reading software should be interpolated
between the values in this frame. Three equal adjustments for three
subsequent frequencies. A frequency should only be described once in
the frame.

4.14. Reverb

Yet another subjective one. You may here adjust echoes of different
kinds. Reverb left/right is the delay between every bounce in ms.
Reverb bounces left/right is the number of bounces that should be
made. $FF equals an infinite number of bounces. Feedback is the
amount of volume that should be returned to the next echo bounce. $00
is 0%, $FF is 100%. If this value were $7F, there would be 50% volume
reduction on the first bounce, 50% of that on the second and so on.
Left to left means the sound from the left bounce to be played in the
left speaker, while left to right means sound from the left bounce to
be played in the right speaker.

‘Premix left to right’ is the amount of left sound to be mixed in the
right before any reverb is applied, where $00 id 0% and $FF is 100%.
‘Premix right to left’ does the same thing, but right to left.
Setting both premix to $FF would result in a mono output (if the
reverb is applied symmetric). There may only be one “RVRB” frame in
each tag.

<Header for ‘Reverb’, ID: “RVRB”>
Reverb left (ms) $xx xx
Reverb right (ms) $xx xx
Reverb bounces, left $xx
Reverb bounces, right $xx
Reverb feedback, left to left $xx
Reverb feedback, left to right $xx
Reverb feedback, right to right $xx
Reverb feedback, right to left $xx
Premix left to right $xx
Premix right to left $xx

4.15. Attached picture

This frame contains a picture directly related to the audio file.
Image format is the MIME type and subtype [MIME] for the image. In
the event that the MIME media type name is omitted, “image/” will be
implied. The “image/png” [PNG] or “image/jpeg” [JFIF] picture format
should be used when interoperability is wanted. Description is a
short description of the picture, represented as a terminated
textstring. The description has a maximum length of 64 characters,
but may be empty. There may be several pictures attached to one file,
each in their individual “APIC” frame, but only one with the same
content descriptor. There may only be one picture with the picture
type declared as picture type $01 and $02 respectively. There is the
possibility to put only a link to the image file by using the ‘MIME
type’ “–>” and having a complete URL [URL] instead of picture data.
The use of linked files should however be used sparingly since there
is the risk of separation of files.

<Header for ‘Attached picture’, ID: “APIC”>
Text encoding $xx
MIME type <text string> $00
Picture type $xx
Description <text string according to encoding> $00 (00)
Picture data <binary data>

	Picture type: $00 Other

	$01 32x32 pixels ‘file icon’ (PNG only)
$02 Other file icon
$03 Cover (front)
$04 Cover (back)
$05 Leaflet page
$06 Media (e.g. lable side of CD)
$07 Lead artist/lead performer/soloist
$08 Artist/performer
$09 Conductor
$0A Band/Orchestra
$0B Composer
$0C Lyricist/text writer
$0D Recording Location
$0E During recording
$0F During performance
$10 Movie/video screen capture
$11 A bright coloured fish
$12 Illustration
$13 Band/artist logotype
$14 Publisher/Studio logotype

4.16. General encapsulated object

In this frame any type of file can be encapsulated. After the header,
‘Frame size’ and ‘Encoding’ follows ‘MIME type’ [MIME] represented as
as a terminated string encoded with ISO 8859-1 [ISO-8859-1]. The
filename is case sensitive and is encoded as ‘Encoding’. Then follows
a content description as terminated string, encoded as ‘Encoding’.
The last thing in the frame is the actual object. The first two
strings may be omitted, leaving only their terminations. MIME type is
always an ISO-8859-1 text string. There may be more than one “GEOB”
frame in each tag, but only one with the same content descriptor.

<Header for ‘General encapsulated object’, ID: “GEOB”>
Text encoding $xx
MIME type <text string> $00
Filename <text string according to encoding> $00 (00)
Content description <text string according to enc?ding> $00 (00)
Encapsulated object <binary data>

4.17. Play counter

This is simply a counter of the number of times a file has been
played. The value is increased by one every time the file begins to
play. There may only be one “PCNT” frame in each tag. When the
counter reaches all one’s, one byte is inserted in front of the
counter thus making the counter eight bits bigger. The counter must
be at least 32-bits long to begin with.

<Header for ‘Play counter’, ID: “PCNT”>
Counter $xx xx xx xx (xx ...)

4.18. Popularimeter

The purpose of this frame is to specify how good an audio file is.
Many interesting applications could be found to this frame such as a
playlist that features better audiofiles more often than others or it
could be used to profile a person’s taste and find other ‘good’ files
by comparing people’s profiles. The frame is very simple. It contains
the email address to the user, one rating byte and a four byte play
counter, intended to be increased with one for every time the file is
played. The email is a terminated string. The rating is 1-255 where
1 is worst and 255 is best. 0 is unknown. If no personal counter is
wanted it may be omitted. When the counter reaches all one’s, one
byte is inserted in front of the counter thus making the counter
eight bits bigger in the same away as the play counter (“PCNT”).
There may be more than one “POPM” frame in each tag, but only one
with the same email address.

<Header for ‘Popularimeter’, ID: “POPM”>
Email to user <text string> $00
Rating $xx
Counter $xx xx xx xx (xx ...)

4.19. Recommended buffer size

Sometimes the server from which a audio file is streamed is aware of
transmission or coding problems resulting in interruptions in the
audio stream. In these cases, the size of the buffer can be
recommended by the server using this frame. If the ‘embedded info
flag’ is true (1) then this indicates that an ID3 tag with the
maximum size described in ‘Buffer size’ may occur in the audiostream.
In such case the tag should reside between two MPEG [MPEG] frames, if
the audio is MPEG encoded. If the position of the next tag is known,
‘offset to next tag’ may be used. The offset is calculated from the
end of tag in which this frame resides to the first byte of the
header in the next. This field may be omitted. Embedded tags are
generally not recommended since this could render unpredictable
behaviour from present software/hardware.

For applications like streaming audio it might be an idea to embed
tags into the audio stream though. If the clients connects to
individual connections like HTTP and there is a possibility to begin
every transmission with a tag, then this tag should include a
‘recommended buffer size’ frame. If the client is connected to a
arbitrary point in the stream, such as radio or multicast, then the
‘recommended buffer size’ frame should be included in every tag.
Every tag that is picked up after the initial/first tag is to be
considered as an update of the previous one. E.g. if there is a
“TIT2” frame in the first received tag and one in the second tag,
then the first should be ‘replaced’ with the second.

The ‘Buffer size’ should be kept to a minimum. There may only be one
“RBUF” frame in each tag.

<Header for ‘Recommended buffer size’, ID: “RBUF”>
Buffer size $xx xx xx
Embedded info flag %0000000x
Offset to next tag $xx xx xx xx

4.20. Audio encryption

This frame indicates if the actual audio stream is encrypted, and by
whom. Since standardisation of such encrypion scheme is beyond this
document, all “AENC” frames begin with a terminated string with a
URL containing an email address, or a link to a location where an
email address can be found, that belongs to the organisation
responsible for this specific encrypted audio file. Questions
regarding the encrypted audio should be sent to the email address
specified. If a $00 is found directly after the ‘Frame size’ and the
audiofile indeed is encrypted, the whole file may be considered
useless.

After the ‘Owner identifier’, a pointer to an unencrypted part of the
audio can be specified. The ‘Preview start’ and ‘Preview length’ is
described in frames. If no part is unencrypted, these fields should
be left zeroed. After the ‘preview length’ field follows optionally a
datablock required for decryption of the audio. There may be more
than one “AENC” frames in a tag, but only one with the same ‘Owner
identifier’.

<Header for ‘Audio encryption’, ID: “AENC”>
Owner identifier <text string> $00
Preview start $xx xx
Preview length $xx xx
Encryption info <binary data>

4.21. Linked information

To keep space waste as low as possible this frame may be used to link
information from another ID3v2 tag that might reside in another audio
file or alone in a binary file. It is recommended that this method is
only used when the files are stored on a CD-ROM or other
circumstances when the risk of file seperation is low. The frame
contains a frame identifier, which is the frame that should be linked
into this tag, a URL [URL] field, where a reference to the file where
the frame is given, and additional ID data, if needed. Data should be
retrieved from the first tag found in the file to which this link
points. There may be more than one “LINK” frame in a tag, but only
one with the same contents. A linked frame is to be considered as
part of the tag and has the same restrictions as if it was a physical
part of the tag (i.e. only one “RVRB” frame allowed, whether it’s
linked or not).

<Header for ‘Linked information’, ID: “LINK”>
Frame identifier $xx xx xx
URL <text string> $00
ID and additional data <text string(s)>

Frames that may be linked and need no additional data are “IPLS”,
“MCID”, “ETCO”, “MLLT”, “SYTC”, “RVAD”, “EQUA”, “RVRB”, “RBUF”, the
text information frames and the URL link frames.

The “TXXX”, “APIC”, “GEOB” and “AENC” frames may be linked with
the content descriptor as additional ID data.

The “COMM”, “SYLT” and “USLT” frames may be linked with three bytes
of language descriptor directly followed by a content descriptor as
additional ID data.

4.22. Position synchronisation frame

This frame delivers information to the listener of how far into the
audio stream he picked up; in effect, it states the time offset of
the first frame in the stream. The frame layout is:

<Head for ‘Position synchronisation’, ID: “POSS”>
Time stamp format $xx
Position $xx (xx ...)

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

and position is where in the audio the listener starts to receive,
i.e. the beginning of the next frame. If this frame is used in the
beginning of a file the value is always 0. There may only be one
“POSS” frame in each tag.

4.23. Terms of use frame

This frame contains a brief description of the terms of use and
ownership of the file. More detailed information concerning the legal
terms might be available through the “WCOP” frame. Newlines are
allowed in the text. There may only be one “USER” frame in a tag.

<Header for ‘Terms of use frame’, ID: “USER”>
Text encoding $xx
Language $xx xx xx
The actual text <text string according to encoding>

4.24. Ownership frame

The ownership frame might be used as a reminder of a made transaction
or, if signed, as proof. Note that the “USER” and “TOWN” frames are
good to use in conjunction with this one. The frame begins, after the
frame ID, size and encoding fields, with a ‘price payed’ field. The
first three characters of this field contains the currency used for
the transaction, encoded according to ISO 4217 [ISO-4217] alphabetic
currency code. Concatenated to this is the actual price payed, as a
numerical string using ”.” as the decimal separator. Next is an 8
character date string (YYYYMMDD) followed by a string with the name
of the seller as the last field in the frame. There may only be one
“OWNE” frame in a tag.

<Header for ‘Ownership frame’, ID: “OWNE”>
Text encoding $xx
Price payed <text string> $00
Date of purch. <text string>
Seller <text string according to encoding>

4.25. Commercial frame

This frame enables several competing offers in the same tag by
bundling all needed information. That makes this frame rather complex
but it’s an easier solution than if one tries to achieve the same
result with several frames. The frame begins, after the frame ID,
size and encoding fields, with a price string field. A price is
constructed by one three character currency code, encoded according
to ISO 4217 [ISO-4217] alphabetic currency code, followed by a
numerical value where ”.” is used as decimal seperator. In the price
string several prices may be concatenated, seperated by a “/”
character, but there may only be one currency of each type.

The price string is followed by an 8 character date string in the
format YYYYMMDD, describing for how long the price is valid. After
that is a contact URL, with which the user can contact the seller,
followed by a one byte ‘received as’ field. It describes how the
audio is delivered when bought according to the following list:

$00 Other
$01 Standard CD album with other songs
$02 Compressed audio on CD
$03 File over the Internet
$04 Stream over the Internet
$05 As note sheets
$06 As note sheets in a book with other sheets
$07 Music on other media
$08 Non-musical merchandise

Next follows a terminated string with the name of the seller followed
by a terminated string with a short description of the product. The
last thing is the ability to include a company logotype. The first of
them is the ‘Picture MIME type’ field containing information about
which picture format is used. In the event that the MIME media type
name is omitted, “image/” will be implied. Currently only “image/png”
and “image/jpeg” are allowed. This format string is followed by the
binary picture data. This two last fields may be omitted if no
picture is to attach.

<Header for ‘Commercial frame’, ID: “COMR”>
Text encoding $xx
Price string <text string> $00
Valid until <text string>
Contact URL <text string> $00
Received as $xx
Name of seller <text string according to encoding> $00 (00)
Description <text string according to encoding> $00 (00)
Picture MIME type <string> $00
Seller logo <binary data>

4.26. Encryption method registration

To identify with which method a frame has been encrypted the
encryption method must be registered in the tag with this frame. The
‘Owner identifier’ is a null-terminated string with a URL [URL]
containing an email address, or a link to a location where an email
address can be found, that belongs to the organisation responsible
for this specific encryption method. Questions regarding the
encryption method should be sent to the indicated email address. The
‘Method symbol’ contains a value that is associated with this method
throughout the whole tag. Values below $80 are reserved. The ‘Method
symbol’ may optionally be followed by encryption specific data. There
may be several “ENCR” frames in a tag but only one containing the
same symbol and only one containing the same owner identifier. The
method must be used somewhere in the tag. See section 3.3.1, flag j
for more information.

<Header for ‘Encryption method registration’, ID: “ENCR”>
Owner identifier <text string> $00
Method symbol $xx
Encryption data <binary data>

4.27. Group identification registration

This frame enables grouping of otherwise unrelated frames. This can
be used when some frames are to be signed. To identify which frames
belongs to a set of frames a group identifier must be registered in
the tag with this frame. The ‘Owner identifier’ is a null-terminated
string with a URL [URL] containing an email address, or a link to a
location where an email address can be found, that belongs to the
organisation responsible for this grouping. Questions regarding the
grouping should be sent to the indicated email address. The ‘Group
symbol’ contains a value that associates the frame with this group
throughout the whole tag. Values below $80 are reserved. The ‘Group
symbol’ may optionally be followed by some group specific data, e.g.
a digital signature. There may be several “GRID” frames in a tag but
only one containing the same symbol and only one containing the same
owner identifier. The group symbol must be used somewhere in the tag.
See section 3.3.1, flag j for more information.

<Header for ‘Group ID registration’, ID: “GRID”>
Owner identifier <text string> $00
Group symbol $xx

Group dependent data <binary data>

4.28. Private frame

This frame is used to contain information from a software producer
that its program uses and does not fit into the other frames. The
frame consists of an ‘Owner identifier’ string and the binary data.
The ‘Owner identifier’ is a null-terminated string with a URL [URL]
containing an email address, or a link to a location where an email
address can be found, that belongs to the organisation responsible
for the frame. Questions regarding the frame should be sent to the
indicated email address. The tag may contain more than one “PRIV”
frame but only with different contents. It is recommended to keep the
number of “PRIV” frames as low as possible.

<Header for ‘Private frame’, ID: “PRIV”>
Owner identifier <text string> $00

The private data <binary data>

	The ‘unsynchronisation scheme’

The only purpose of the ‘unsynchronisation scheme’ is to make the
ID3v2 tag as compatible as possible with existing software. There is
no use in ‘unsynchronising’ tags if the file is only to be processed
by new software. Unsynchronisation may only be made with MPEG 2 layer
I, II and III and MPEG 2.5 files.

Whenever a false synchronisation is found within the tag, one zeroed
byte is inserted after the first false synchronisation byte. The
format of a correct sync that should be altered by ID3 encoders is as
follows:

%11111111 111xxxxx

And should be replaced with:

%11111111 00000000 111xxxxx

This has the side effect that all $FF 00 combinations have to be
altered, so they won’t be affected by the decoding process. Therefore
all the $FF 00 combinations have to be replaced with the $FF 00 00
combination during the unsynchronisation.

To indicate usage of the unsynchronisation, the first bit in ‘ID3
flags’ should be set. This bit should only be set if the tag
contains a, now corrected, false synchronisation. The bit should
only be clear if the tag does not contain any false synchronisations.

Do bear in mind, that if a compression scheme is used by the encoder,
the unsynchronisation scheme should be applied afterwards. When
decoding a compressed, ‘unsynchronised’ file, the ‘unsynchronisation
scheme’ should be parsed first, decompression afterwards.

If the last byte in the tag is $FF, and there is a need to eliminate
false synchronisations in the tag, at least one byte of padding
should be added.

	Copyright

Copyright (C) Martin Nilsson 1998. All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that a reference to this document is included on all
such copies and derivative works. However, this document itself may
not be modified in any way and reissued as the original document.

The limited permissions granted above are perpetual and will not be
revoked.

This document and the information contained herein is provided on an
“AS IS” basis and THE AUTHORS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

	References

[CDDB] Compact Disc Data Base

http://www.cddb.com

[ID3v2] Martin Nilsson, “ID3v2 informal standard”.

http://www.id3lib.org/id3/id3v2-00.txt

[ISO-639-2] ISO/FDIS 639-2.
Codes for the representation of names of languages, Part 2: Alpha-3
code. Technical committee / subcommittee: TC 37 / SC 2

[ISO-4217] ISO 4217:1995.
Codes for the representation of currencies and funds.
Technical committee / subcommittee: TC 68

[ISO-8859-1] ISO/IEC DIS 8859-1.
8-bit single-byte coded graphic character sets, Part 1: Latin
alphabet No. 1. Technical committee / subcommittee: JTC 1 / SC 2

[ISRC] ISO 3901:1986
International Standard Recording Code (ISRC).
Technical committee / subcommittee: TC 46 / SC 9

[JFIF] JPEG File Interchange Format, version 1.02

http://www.w3.org/Graphics/JPEG/jfif.txt“>http://www.w3.org/Graphics/JPEG/jfif.txt

[MIME] Freed, N. and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies”,
RFC 2045, November 1996.

ftp://ftp.isi.edu/in-notes/rfc2045.txt“>ftp://ftp.isi.edu/in-notes/rfc2045.txt

[MPEG] ISO/IEC 11172-3:1993.
Coding of moving pictures and associated audio for digital storage
media at up to about 1,5 Mbit/s, Part 3: Audio.
Technical committee / subcommittee: JTC 1 / SC 29

and

ISO/IEC 13818-3:1995
Generic coding of moving pictures and associated audio information,
Part 3: Audio.
Technical committee / subcommittee: JTC 1 / SC 29

and

ISO/IEC DIS 13818-3
Generic coding of moving pictures and associated audio information,
Part 3: Audio (Revision of ISO/IEC 13818-3:1995)

[PNG] Portable Network Graphics, version 1.0

http://www.w3.org/TR/REC-png-multi.html

[UNICODE] ISO/IEC 10646-1:1993.
Universal Multiple-Octet Coded Character Set (UCS), Part 1:
Architecture and Basic Multilingual Plane.
Technical committee / subcommittee: JTC 1 / SC 2

http://www.unicode.org/

[URL] T. Berners-Lee, L. Masinter & M. McCahill, “Uniform Resource
Locators (URL).”, RFC 1738, December 1994.

ftp://ftp.isi.edu/in-notes/rfc1738.txt

[ZLIB] P. Deutsch, Aladdin Enterprises & J-L. Gailly, “ZLIB
Compressed
Data Format Specification version 3.3”, RFC 1950, May 1996.

ftp://ftp.isi.edu/in-notes/rfc1950.txt

	Appendix

	Appendix A - Genre List from ID3v1

The following genres is defined in ID3v1

0.Blues
1.Classic Rock
2.Country
3.Dance
4.Disco
5.Funk
6.Grunge
7.Hip-Hop
8.Jazz
9.Metal

10.New Age
11.Oldies
12.Other
13.Pop
14.R&B
15.Rap
16.Reggae
17.Rock
18.Techno
19.Industrial
20.Alternative
21.Ska
22.Death Metal
23.Pranks
24.Soundtrack
25.Euro-Techno
26.Ambient
27.Trip-Hop
28.Vocal
29.Jazz+Funk
30.Fusion
31.Trance
32.Classical
33.Instrumental
34.Acid
35.House
36.Game
37.Sound Clip
38.Gospel
39.Noise
40.AlternRock
41.Bass
42.Soul
43.Punk
44.Space
45.Meditative
46.Instrumental Pop
47.Instrumental Rock
48.Ethnic
49.Gothic
50.Darkwave
51.Techno-Industrial
52.Electronic
53.Pop-Folk
54.Eurodance
55.Dream
56.Southern Rock
57.Comedy
58.Cult
59.Gangsta
60.Top 40
61.Christian Rap
62.Pop/Funk
63.Jungle
64.Native American
65.Cabaret
66.New Wave
67.Psychadelic
68.Rave
69.Showtunes
70.Trailer
71.Lo-Fi
72.Tribal
73.Acid Punk
74.Acid Jazz
75.Polka
76.Retro
77.Musical
78.Rock & Roll
79.Hard Rock

The following genres are Winamp extensions

80.Folk
81.Folk-Rock
82.National Folk
83.Swing
84.Fast Fusion
85.Bebob
86.Latin
87.Revival
88.Celtic
89.Bluegrass
90.Avantgarde
91.Gothic Rock
92.Progressive Rock
93.Psychedelic Rock
94.Symphonic Rock
95.Slow Rock
96.Big Band
97.Chorus
98.Easy Listening
99.Acoustic

100.Humour
101.Speech
102.Chanson
103.Opera
104.Chamber Music
105.Sonata
106.Symphony
107.Booty Bass
108.Primus
109.Porn Groove
110.Satire
111.Slow Jam
112.Club
113.Tango
114.Samba
115.Folklore
116.Ballad
117.Power Ballad
118.Rhythmic Soul
119.Freestyle
120.Duet
121.Punk Rock
122.Drum Solo
123.Acapella
124.Euro-House
125.Dance Hall

	Author’s Address

Written by

Martin Nilsson
Rydsv?gen 246 C. 30
S-584 34 Link?ping
Sweden

Email: nilsson@id3.org

Edited by

Dirk Mahoney
57 Pechey Street
Chermside Q
Australia 4032

Email: dirk@id3.org

Johan Sundstr?m
Als?ttersgatan 5 A. 34
S-584 35 Link?ping
Sweden

Email: johan@id3.org

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3 tag version 2.4.0 - Main Structure

Status of this document

This document is an informal standard and replaces the ID3v2.3.0 standard
[ID3v2]. A formal standard will use another revision number even if the
content is identical to document. The contents in this document may change
for clarifications but never for added or altered functionallity.

Distribution of this document is unlimited.

Abstract

This document describes the main structure of ID3v2.4.0, which is a revised
version of the ID3v2 informal standard [ID3v2] version 2.3.0. The ID3v2
offers a flexible way of storing audio meta information within the audio
file itself. The information may be technical information, such as
equalisation curves, as well as title, performer, copyright etc.

ID3v2.4.0 is meant to be as close as possible to ID3v2.3.0 in order to
allow for implementations to be revised as easily as possible.

Conventions in this document

Text within “” is a text string exactly as it appears in a tag. Numbers
preceded with $ are hexadecimal and numbers preceded with % are binary. $xx
is used to indicate a byte with unknown content. %x is used to indicate a
bit with unknown content. The most significant bit (MSB) of a byte is
called ‘bit 7’ and the least significant bit (LSB) is called ‘bit 0’.

A tag is the whole tag described in this document. A frame is a block of
information in the tag. The tag consists of a header, frames and optional
padding. A field is a piece of information; one value, a string etc. A
numeric string is a string that consists of the characters “0123456789” only.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119 [KEYWORDS].

ID3v2 overview

ID3v2 is a general tagging format for audio, which makes it possible to
store meta data about the audio inside the audio file itself. The ID3 tag
described in this document is mainly targeted at files encoded with
MPEG-1/2 layer I, MPEG-1/2 layer II, MPEG-1/2 layer III and MPEG-2.5, but
may work with other types of encoded audio or as a stand alone format for
audio meta data.

ID3v2 is designed to be as flexible and expandable as possible to meet new
meta information needs that might arise. To achieve that ID3v2 is
constructed as a container for several information blocks, called frames,
whose format need not be known to the software that encounters them. At the
start of every frame is an unique and predefined identifier, a size
descriptor that allows software to skip unknown frames and a flags field.
The flags describes encoding details and if the frame should remain in the
tag, should it be unknown to the software, if the file is altered.

The bitorder in ID3v2 is most significant bit first (MSB). The byteorder in
multibyte numbers is most significant byte first (e.g. $12345678 would be
encoded $12 34 56 78), also known as big endian and network byte order.

Overall tag structure:

	Header (10 bytes)

	Extended Header
(variable length, OPTIONAL)

	Frames (variable length)

	Padding
(variable length, OPTIONAL)

	Footer (10 bytes, OPTIONAL)

In general, padding and footer are mutually exclusive. See details in
sections 3.3, 3.4 and 5.

ID3v2 header

The first part of the ID3v2 tag is the 10 byte tag header, laid out
as follows:

ID3v2/file identifier "ID3"
ID3v2 version $04 00
ID3v2 flags %abcd0000
ID3v2 size 4 * %0xxxxxxx

The first three bytes of the tag are always “ID3”, to indicate that this is
an ID3v2 tag, directly followed by the two version bytes. The first byte of
ID3v2 version is its major version, while the second byte is its revision
number. In this case this is ID3v2.4.0. All revisions are backwards
compatible while major versions are not. If software with ID3v2.4.0 and
below support should encounter version five or higher it should simply
ignore the whole tag. Version or revision will never be $FF.

The version is followed by the ID3v2 flags field, of which currently four
flags are used.

	a - Unsynchronisation

	Bit 7 in the ‘ID3v2 flags’ indicates whether or not unsynchronisation
is applied on all frames (see section 6.1 for details); a set bit
indicates usage.

	b - Extended header

	The second bit (bit 6) indicates whether or not the header is followed
by an extended header. The extended header is described in section 3.2.
A set bit indicates the presence of an extended header.

	c - Experimental indicator

	The third bit (bit 5) is used as an ‘experimental indicator’. This flag
SHALL always be set when the tag is in an experimental stage.

	d - Footer present

	Bit 4 indicates that a footer (section 3.4) is present at the very end
of the tag. A set bit indicates the presence of a footer.

All the other flags MUST be cleared. If one of these undefined flags are
set, the tag might not be readable for a parser that does not know the
flags function.

The ID3v2 tag size is stored as a 32 bit synchsafe integer (section 6.2),
making a total of 28 effective bits (representing up to 256MB).

The ID3v2 tag size is the sum of the byte length of the extended header,
the padding and the frames after unsynchronisation. If a footer is present
this equals to (‘total size’ - 20) bytes, otherwise (‘total size’ - 10)
bytes.

An ID3v2 tag can be detected with the following pattern:

$49 44 33 yy yy xx zz zz zz zz

Where yy is less than $FF, xx is the ‘flags’ byte and zz is less than $80.

Extended header

The extended header contains information that can provide further
insight in the structure of the tag, but is not vital to the correct
parsing of the tag information; hence the extended header is
optional.

Extended header size 4 * %0xxxxxxx
Number of flag bytes $01
Extended Flags $xx

Where the ‘Extended header size’ is the size of the whole extended
header, stored as a 32 bit synchsafe integer. An extended header can
thus never have a size of fewer than six bytes.

The extended flags field, with its size described by ‘number of flag
bytes’, is defined as:

%0bcd0000

Each flag that is set in the extended header has data attached, which
comes in the order in which the flags are encountered (i.e. the data
for flag ‘b’ comes before the data for flag ‘c’). Unset flags cannot
have any attached data. All unknown flags MUST be unset and their
corresponding data removed when a tag is modified.

Every set flag’s data starts with a length byte, which contains a
value between 0 and 128 ($00 - $7f), followed by data that has the
field length indicated by the length byte. If a flag has no attached
data, the value $00 is used as length byte.

	b - Tag is an update

	If this flag is set, the present tag is an update of a tag found
earlier in the present file or stream. If frames defined as unique are
found in the present tag, they are to override any corresponding ones
found in the earlier tag. This flag has no corresponding data.

Flag data length $00

	c - CRC data present

	If this flag is set, a CRC-32 [ISO-3309] data is included in the
extended header. The CRC is calculated on all the data between the
header and footer as indicated by the header’s tag length field, minus
the extended header. Note that this includes the padding (if there is
any), but excludes the footer. The CRC-32 is stored as an 35 bit
synchsafe integer, leaving the upper four bits always zeroed.

Flag data length $05
Total frame CRC 5 * %0xxxxxxx

	d - Tag restrictions

	For some applications it might be desired to restrict a tag in more
ways than imposed by the ID3v2 specification. Note that the
presence of these restrictions does not affect how the tag is
decoded, merely how it was restricted before encoding. If this flag
is set the tag is restricted as follows:

Flag data length $01
Restrictions %ppqrrstt

	p - Tag size restrictions

	00 No more than 128 frames and 1 MB total tag size.
01 No more than 64 frames and 128 KB total tag size.
10 No more than 32 frames and 40 KB total tag size.
11 No more than 32 frames and 4 KB total tag size.

	q - Text encoding restrictions

	0 No restrictions
1 Strings are only encoded with ISO-8859-1 [ISO-8859-1] or
 UTF-8 [UTF-8].

	r - Text fields size restrictions

	00 No restrictions
01 No string is longer than 1024 characters.
10 No string is longer than 128 characters.
11 No string is longer than 30 characters.

Note that nothing is said about how many bytes is used to represent
those characters, since it is encoding dependent. If a text frame
consists of more than one string, the sum of the strungs is restricted
as stated.

	s - Image encoding restrictions

	0 No restrictions
1 Images are encoded only with PNG [PNG] or JPEG [JFIF].

	t - Image size restrictions

	00 No restrictions
01 All images are 256x256 pixels or smaller.
10 All images are 64x64 pixels or smaller.
11 All images are exactly 64x64 pixels, unless required
 otherwise.

Padding

It is OPTIONAL to include padding after the final frame (at the end of the
ID3 tag), making the size of all the frames together smaller than the size
given in the tag header. A possible purpose of this padding is to allow for
adding a few additional frames or enlarge existing frames within the tag
without having to rewrite the entire file. The value of the padding bytes
must be $00. A tag MUST NOT have any padding between the frames or between
the tag header and the frames. Furthermore it MUST NOT have any padding
when a tag footer is added to the tag.

ID3v2 footer

To speed up the process of locating an ID3v2 tag when searching from the
end of a file, a footer can be added to the tag. It is REQUIRED to add a
footer to an appended tag, i.e. a tag located after all audio data. The
footer is a copy of the header, but with a different identifier.

ID3v2 identifier "3DI"
ID3v2 version $04 00
ID3v2 flags %abcd0000
ID3v2 size 4 * %0xxxxxxx

ID3v2 frame overview

All ID3v2 frames consists of one frame header followed by one or more
fields containing the actual information. The header is always 10
bytes and laid out as follows:

Frame ID $xx xx xx xx (four characters)
Size 4 * %0xxxxxxx
Flags $xx xx

The frame ID is made out of the characters capital A-Z and 0-9. Identifiers
beginning with “X”, “Y” and “Z” are for experimental frames and free for
everyone to use, without the need to set the experimental bit in the tag
header. Bear in mind that someone else might have used the same identifier
as you. All other identifiers are either used or reserved for future use.

The frame ID is followed by a size descriptor containing the size of the
data in the final frame, after encryption, compression and
unsynchronisation. The size is excluding the frame header (‘total frame
size’ - 10 bytes) and stored as a 32 bit synchsafe integer.

In the frame header the size descriptor is followed by two flag bytes.
These flags are described in section 4.1.

There is no fixed order of the frames’ appearance in the tag, although it
is desired that the frames are arranged in order of significance concerning
the recognition of the file. An example of such order: UFID, TIT2, MCDI,
TRCK ...

A tag MUST contain at least one frame. A frame must be at least 1 byte big,
excluding the header.

If nothing else is said, strings, including numeric strings and URLs [URL],
are represented as ISO-8859-1 [ISO-8859-1] characters in the range $20 -
$FF. Such strings are represented in frame descriptions as <text string>,
or <full text string> if newlines are allowed. If nothing else is said
newline character is forbidden. In ISO-8859-1 a newline is represented,
when allowed, with $0A only.

Frames that allow different types of text encoding contains a text encoding
description byte. Possible encodings:

$00 ISO-8859-1 [ISO-8859-1]. Terminated with $00.
$01 UTF-16 [UTF-16] encoded Unicode [UNICODE] with BOM. All
 strings in the same frame SHALL have the same byteorder.
 Terminated with $00 00.
$02 UTF-16BE [UTF-16] encoded Unicode [UNICODE] without BOM.
 Terminated with $00 00.
$03 UTF-8 [UTF-8] encoded Unicode [UNICODE]. Terminated with $00.

Strings dependent on encoding are represented in frame descriptions as
<text string according to encoding>, or <full text string according to
encoding> if newlines are allowed. Any empty strings of type $01 which are
NULL-terminated may have the Unicode BOM followed by a Unicode NULL ($FF FE
00 00 or $FE FF 00 00).

The timestamp fields are based on a subset of ISO 8601. When being as
precise as possible the format of a time string is yyyy-MM-ddTHH:mm:ss
(year, “-”, month, “-”, day, “T”, hour (out of 24), ”:”, minutes, ”:”,
seconds), but the precision may be reduced by removing as many time
indicators as wanted. Hence valid timestamps are yyyy, yyyy-MM, yyyy-MM-dd,
yyyy-MM-ddTHH, yyyy-MM-ddTHH:mm and yyyy-MM-ddTHH:mm:ss. All time stamps
are UTC. For durations, use the slash character as described in 8601, and
for multiple non- contiguous dates, use multiple strings, if allowed by the
frame definition.

The three byte language field, present in several frames, is used to
describe the language of the frame’s content, according to ISO-639-2
[ISO-639-2]. The language should be represented in lower case. If the
language is not known the string “XXX” should be used.

All URLs [URL] MAY be relative, e.g. “picture.png”, ”../doc.txt”.

If a frame is longer than it should be, e.g. having more fields than
specified in this document, that indicates that additions to the frame have
been made in a later version of the ID3v2 standard. This is reflected by
the revision number in the header of the tag.

Frame header flags

In the frame header the size descriptor is followed by two flag bytes. All
unused flags MUST be cleared. The first byte is for ‘status messages’ and
the second byte is a format description. If an unknown flag is set in the
first byte the frame MUST NOT be changed without that bit cleared. If an
unknown flag is set in the second byte the frame is likely to not be
readable. Some flags in the second byte indicates that extra information is
added to the header. These fields of extra information is ordered as the
flags that indicates them. The flags field is defined as follows (l and o
left out because ther resemblence to one and zero):

%0abc0000 %0h00kmnp

Some frame format flags indicate that additional information fields are
added to the frame. This information is added after the frame header and
before the frame data in the same order as the flags that indicates them.
I.e. the four bytes of decompressed size will precede the encryption method
byte. These additions affects the ‘frame size’ field, but are not subject
to encryption or compression.

The default status flags setting for a frame is, unless stated otherwise,
‘preserved if tag is altered’ and ‘preserved if file is altered’, i.e.
%00000000.

Frame status flags

	a - Tag alter preservation

	This flag tells the tag parser what to do with this frame if it is
unknown and the tag is altered in any way. This applies to all kinds of
alterations, including adding more padding and reordering the frames.

0 Frame should be preserved.
1 Frame should be discarded.

	b - File alter preservation

	This flag tells the tag parser what to do with this frame if it is
unknown and the file, excluding the tag, is altered. This does not
apply when the audio is completely replaced with other audio data.

0 Frame should be preserved.
1 Frame should be discarded.

	c - Read only

	This flag, if set, tells the software that the contents of this
frame are intended to be read only. Changing the contents might
break something, e.g. a signature. If the contents are changed,
without knowledge of why the frame was flagged read only and
without taking the proper means to compensate, e.g. recalculating
the signature, the bit MUST be cleared.

Frame format flags

	h - Grouping identity

	This flag indicates whether or not this frame belongs in a group
with other frames. If set, a group identifier byte is added to the
frame. Every frame with the same group identifier belongs to the
same group.

0 Frame does not contain group information
1 Frame contains group information

	k - Compression

	This flag indicates whether or not the frame is compressed. A ‘Data
Length Indicator’ byte MUST be included in the frame.

0 Frame is not compressed.
1 Frame is compressed using zlib [zlib] deflate method.
 If set, this requires the 'Data Length Indicator' bit
 to be set as well.

	m - Encryption

	This flag indicates whether or not the frame is encrypted. If set, one
byte indicating with which method it was encrypted will be added to the
frame. See description of the ENCR frame for more information about
encryption method registration. Encryption should be done after
compression. Whether or not setting this flag requires the presence of
a ‘Data Length Indicator’ depends on the specific algorithm used.

0 Frame is not encrypted.
1 Frame is encrypted.

	n - Unsynchronisation

	This flag indicates whether or not unsynchronisation was applied to
this frame. See section 6 for details on unsynchronisation. If this
flag is set all data from the end of this header to the end of this
frame has been unsynchronised. Although desirable, the presence of a
‘Data Length Indicator’ is not made mandatory by unsynchronisation.

0 Frame has not been unsynchronised.
1 Frame has been unsyrchronised.

	p - Data length indicator

	This flag indicates that a data length indicator has been added to
the frame. The data length indicator is the value one would write
as the ‘Frame length’ if all of the frame format flags were
zeroed, represented as a 32 bit synchsafe integer.

0 There is no Data Length Indicator.
1 A data length Indicator has been added to the frame.

Tag location

The default location of an ID3v2 tag is prepended to the audio so that
players can benefit from the information when the data is streamed. It is
however possible to append the tag, or make a prepend/append combination.
When deciding upon where an unembedded tag should be located, the following
order of preference SHOULD be considered.

	Prepend the tag.

	Prepend a tag with all vital information and add a second tag at
the end of the file, before tags from other tagging systems. The first
tag is required to have a SEEK frame.

	Add a tag at the end of the file, before tags from other tagging
systems.

In case 2 and 3 the tag can simply be appended if no other known tags are
present. The suggested method to find ID3v2 tags are:

	Look for a prepended tag using the pattern found in section 3.1.

	If a SEEK frame was found, use its values to guide further
searching.

	Look for a tag footer, scanning from the back of the file.

For every new tag that is found, the old tag should be discarded unless the
update flag in the extended header (section 3.2) is set.

Unsynchronisation

The only purpose of unsynchronisation is to make the ID3v2 tag as
compatible as possible with existing software and hardware. There is no use
in ‘unsynchronising’ tags if the file is only to be processed only by ID3v2
aware software and hardware. Unsynchronisation is only useful with tags in
MPEG 1/2 layer I, II and III, MPEG 2.5 and AAC files.

The unsynchronisation scheme

Whenever a false synchronisation is found within the tag, one zeroed
byte is inserted after the first false synchronisation byte. The
format of synchronisations that should be altered by ID3 encoders is
as follows:

%11111111 111xxxxx

and should be replaced with:

%11111111 00000000 111xxxxx

This has the side effect that all $FF 00 combinations have to be
altered, so they will not be affected by the decoding process.
Therefore all the $FF 00 combinations have to be replaced with the
$FF 00 00 combination during the unsynchronisation.

To indicate usage of the unsynchronisation, the unsynchronisation
flag in the frame header should be set. This bit MUST be set if the
frame was altered by the unsynchronisation and SHOULD NOT be set if
unaltered. If all frames in the tag are unsynchronised the
unsynchronisation flag in the tag header SHOULD be set. It MUST NOT
be set if the tag has a frame which is not unsynchronised.

Assume the first byte of the audio to be $FF. The special case when
the last byte of the last frame is $FF and no padding nor footer is
used will then introduce a false synchronisation. This can be solved
by adding a footer, adding padding or unsynchronising the frame and
add $00 to the end of the frame data, thus adding more byte to the
frame size than a normal unsynchronisation would. Although not
preferred, it is allowed to apply the last method on all frames
ending with $FF.

It is preferred that the tag is either completely unsynchronised or
not unsynchronised at all. A completely unsynchronised tag has no
false synchonisations in it, as defined above, and does not end with
$FF. A completely non-unsynchronised tag contains no unsynchronised
frames, and thus the unsynchronisation flag in the header is cleared.

Do bear in mind, that if compression or encryption is used, the
unsynchronisation scheme MUST be applied afterwards. When decoding an
unsynchronised frame, the unsynchronisation scheme MUST be reversed
first, encryption and decompression afterwards.

Synchsafe integers

In some parts of the tag it is inconvenient to use the unsychronisation
scheme because the size of unsynchronised data is not known in advance,
which is particularly problematic with size descriptors. The solution in
ID3v2 is to use synchsafe integers, in which there can never be any false
synchs. Synchsafe integers are integers that keep its highest bit (bit 7)
zeroed, making seven bits out of eight available. Thus a 32 bit synchsafe
integer can store 28 bits of information.

Example:

255 (%11111111) encoded as a 16 bit synchsafe integer is 383
(%00000001 01111111).

Copyright

Copyright (C) Martin Nilsson 2000. All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that a
reference to this document is included on all such copies and derivative
works. However, this document itself may not be modified in any way and
reissued as the original document.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided on an ‘AS
IS’ basis and THE AUTHORS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

References

	ID3v2

	Martin Nilsson, ID3v2 informal standard [http://www.id3.org/id3v2.3.0.txt].

	ISO-639-2

	ISO/FDIS 639-2. ‘Codes for the representation of names of languages,
Part 2: Alpha-3 code.’ Technical committee / subcommittee: TC 37 / SC 2

	ISO-3309

	ISO 3309 ‘Information Processing Systems–Data Communication High-Level
Data Link Control Procedure–Frame Structure’, IS 3309, October 1984,
3rd Edition.

	ISO-8859-1

	ISO/IEC DIS 8859-1. ‘8-bit single-byte coded graphic character sets,
Part 1: Latin alphabet No. 1.’ Technical committee / subcommittee: JTC
1 / SC 2

	JFIF

	JPEG File Interchange Format, version 1.02 [http://www.w3.org/Graphics/JPEG/jfif.txt]

	KEYWORDS

	S. Bradner, Key words for use in RFCs to Indicate Requirement Levels [ftp://ftp.isi.edu/in-notes/rfc2119.txt], RFC 2119, March 1997.

	MPEG

	ISO/IEC 11172-3:1993. ‘Coding of moving pictures and associated audio
for digital storage media at up to about 1,5 Mbit/s, Part 3: Audio.’
Technical committee / subcommittee: JTC 1 / SC 29

and

ISO/IEC 13818-3:1995 ‘Generic coding of moving pictures and associated
audio information, Part 3: Audio.’ Technical committee / subcommittee:
JTC 1 / SC 29

and

ISO/IEC DIS 13818-3 ‘Generic coding of moving pictures and associated
audio information, Part 3: Audio (Revision of ISO/IEC 13818-3:1995)’

	PNG

	Portable Network Graphics, version 1.0 [http://www.w3.org/TR/REC-png-multi.html]

	UNICODE

	The Unicode Consortium, The Unicode Standard Version 3.0 [http://www.unicode.org/unicode/standard/versions/Unicode3.0.htm],
ISBN 0-201-61633-5.

	URL

	T. Berners-Lee, L. Masinter & M. McCahill, Uniform Resource Locators
(URL) [ftp://ftp.isi.edu/in-notes/rfc1738.txt], RFC 1738, December
1994.

	UTF-8

	F. Yergeau, UTF-8, a transformation format of ISO 10646 [ftp://ftp.isi.edu/in-notes/rfc2279.txt], RFC 2279, January 1998.

	UTF-16

	F. Yergeau, UTF-16, an encoding of ISO 10646 [ftp://ftp.isi.edu/in-notes/rfc2781.txt], RFC 2781, February 2000.

	ZLIB

	P. Deutsch, Aladdin Enterprises & J-L. Gailly, ZLIB Compressed Data
Format Specification version 3.3 [ftp://ftp.isi.edu/in-notes/rfc1950.txt], RFC 1950, May 1996.

Author’s Address

Written by

Martin Nilsson

Rydsvägen 246 C. 30

SE-584 34 Linköping

Sweden

Email: nilsson at id3.org

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3 tag version 2.4.0 - Native Frames

Status of this document

This document is an informal standard and replaces the ID3v2.3.0 standard
[ID3v2]. A formal standard will use another revision number even if the
content is identical to document. The contents in this document may change
for clarifications but never for added or altered functionallity.

Distribution of this document is unlimited.

Abstract

This document describes the frames natively supported by ID3v2.4.0, which
is a revised version of the ID3v2 informal standard [ID3v2.3.0] version
2.3.0. The ID3v2 offers a flexible way of storing audio meta information
within audio file itself. The information may be technical information,
such as equalisation curves, as well as title, performer, copyright etc.

ID3v2.4.0 is meant to be as close as possible to ID3v2.3.0 in order to
allow for implementations to be revised as easily as possible.

Conventions in this document

Text within “” is a text string exactly as it appears in a tag. Numbers
preceded with $ are hexadecimal and numbers preceded with % are binary. $xx
is used to indicate a byte with unknown content. %x is used to indicate a
bit with unknown content. The most significant bit (MSB) of a byte is
called ‘bit 7’ and the least significant bit (LSB) is called ‘bit 0’.

A tag is the whole tag described the ID3v2 main structure document
[ID3v2-strct]. A frame is a block of information in the tag. The tag
consists of a header, frames and optional padding. A field is a piece of
information; one value, a string etc. A numeric string is a string that
consists of the characters “0123456789” only.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119 [KEYWORDS].

Default flags

The default settings for the frames described in this document can be
divided into the following classes. The flags may be set differently if
found more suitable by the software.

	Discarded if tag is altered, discarded if file is altered.

None.

	Discarded if tag is altered, preserved if file is altered.

None.

	Preserved if tag is altered, discarded if file is altered.

ASPI, AENC, ETCO, EQU2, MLLT, POSS, SEEK, SYLT, SYTC, RVA2,
TENC, TLEN

	Preserved if tag is altered, preserved if file is altered.

The rest of the frames.

Declared ID3v2 frames

The following frames are declared in this draft.

	AENC Audio encryption

	APIC Attached picture

	ASPI Audio seek point index

	COMM Comments

	COMR Commercial frame

	ENCR Encryption method registration

	EQU2 Equalisation (2)

	ETCO Event timing codes

	GEOB General encapsulated object

	GRID Group identification registration

	LINK Linked information

	MCDI Music CD identifier

	MLLT MPEG location lookup table

	OWNE Ownership frame

	PRIV Private frame

	PCNT Play counter

	POPM Popularimeter

	POSS Position synchronisation frame

	RBUF Recommended buffer size

	RVA2 Relative volume adjustment (2)

	RVRB Reverb

	SEEK Seek frame

	SIGN Signature frame

	SYLT Synchronised lyric/text

	SYTC Synchronised tempo codes

	TALB Album/Movie/Show title

	TBPM BPM (beats per minute)

	TCOM Composer

	TCON Content type

	TCOP Copyright message

	TDEN Encoding time

	TDLY Playlist delay

	TDOR Original release time

	TDRC Recording time

	TDRL Release time

	TDTG Tagging time

	TENC Encoded by

	TEXT Lyricist/Text writer

	TFLT File type

	TIPL Involved people list

	TIT1 Content group description

	TIT2 Title/songname/content description

	TIT3 Subtitle/Description refinement

	TKEY Initial key

	TLAN Language(s)

	TLEN Length

	TMCL Musician credits list

	TMED Media type

	TMOO Mood

	TOAL Original album/movie/show title

	TOFN Original filename

	TOLY Original lyricist(s)/text writer(s)

	TOPE Original artist(s)/performer(s)

	TOWN File owner/licensee

	TPE1 Lead performer(s)/Soloist(s)

	TPE2 Band/orchestra/accompaniment

	TPE3 Conductor/performer refinement

	TPE4 Interpreted, remixed, or otherwise modified by

	TPOS Part of a set

	TPRO Produced notice

	TPUB Publisher

	TRCK Track number/Position in set

	TRSN Internet radio station name

	TRSO Internet radio station owner

	TSOA Album sort order

	TSOP Performer sort order

	TSOT Title sort order

	TSRC ISRC (international standard recording code)

	TSSE Software/Hardware and settings used for encoding

	TSST Set subtitle

	TXXX User defined text information frame

	UFID Unique file identifier

	USER Terms of use

	USLT Unsynchronised lyric/text transcription

	WCOM Commercial information

	WCOP Copyright/Legal information

	WOAF Official audio file webpage

	WOAR Official artist/performer webpage

	WOAS Official audio source webpage

	WORS Official Internet radio station homepage

	WPAY Payment

	WPUB Publishers official webpage

	WXXX User defined URL link frame

Unique file identifier

This frame’s purpose is to be able to identify the audio file in a
database, that may provide more information relevant to the content. Since
standardisation of such a database is beyond this document, all UFID frames
begin with an ‘owner identifier’ field. It is a null- terminated string
with a URL [URL] containing an email address, or a link to a location where
an email address can be found, that belongs to the organisation responsible
for this specific database implementation. Questions regarding the database
should be sent to the indicated email address. The URL should not be used
for the actual database queries. The string
“http://www.id3.org/dummy/ufid.html” should be used for tests. The ‘Owner
identifier’ must be non-empty (more than just a termination). The ‘Owner
identifier’ is then followed by the actual identifier, which may be up to
64 bytes. There may be more than one “UFID” frame in a tag, but only one
with the same ‘Owner identifier’.

<Header for 'Unique file identifier', ID: "UFID">
Owner identifier <text string> $00
Identifier <up to 64 bytes binary data>

Text information frames

The text information frames are often the most important frames, containing
information like artist, album and more. There may only be one text
information frame of its kind in an tag. All text information frames
supports multiple strings, stored as a null separated list, where null is
reperesented by the termination code for the charater encoding. All text
frame identifiers begin with “T”. Only text frame identifiers begin with
“T”, with the exception of the “TXXX” frame. All the text information
frames have the following format:

<Header for 'Text information frame', ID: "T000" - "TZZZ",
excluding "TXXX" described in 4.2.6.>
Text encoding $xx
Information <text string(s) according to encoding>

Identification frames

	TIT1

	The ‘Content group description’ frame is used if the sound belongs to
a larger category of sounds/music. For example, classical music is
often sorted in different musical sections (e.g. “Piano Concerto”,
“Weather - Hurricane”).

	TIT2

	The ‘Title/Songname/Content description’ frame is the actual name of
the piece (e.g. “Adagio”, “Hurricane Donna”).

	TIT3

	The ‘Subtitle/Description refinement’ frame is used for information
directly related to the contents title (e.g. “Op. 16” or “Performed
live at Wembley”).

	TALB

	The ‘Album/Movie/Show title’ frame is intended for the title of the
recording (or source of sound) from which the audio in the file is taken.

	TOAL

	The ‘Original album/movie/show title’ frame is intended for the title
of the original recording (or source of sound), if for example the
music in the file should be a cover of a previously released song.

	TRCK

	The ‘Track number/Position in set’ frame is a numeric string containing
the order number of the audio-file on its original recording. This MAY
be extended with a “/” character and a numeric string containing the
total number of tracks/elements on the original recording. E.g. “4/9”.

	TPOS

	The ‘Part of a set’ frame is a numeric string that describes which part
of a set the audio came from. This frame is used if the source
described in the “TALB” frame is divided into several mediums, e.g. a
double CD. The value MAY be extended with a “/” character and a numeric
string containing the total number of parts in the set. E.g. “1/2”.

	TSST

	The ‘Set subtitle’ frame is intended for the subtitle of the part of a
set this track belongs to.

	TSRC

	The ‘ISRC’ frame should contain the International Standard Recording
Code [ISRC] (12 characters).

Involved persons frames

	TPE1

	The ‘Lead artist/Lead performer/Soloist/Performing group’ is
used for the main artist.

	TPE2

	The ‘Band/Orchestra/Accompaniment’ frame is used for additional
information about the performers in the recording.

	TPE3

	The ‘Conductor’ frame is used for the name of the conductor.

	TPE4

	The ‘Interpreted, remixed, or otherwise modified by’ frame contains
more information about the people behind a remix and similar
interpretations of another existing piece.

	TOPE

	The ‘Original artist/performer’ frame is intended for the performer of
the original recording, if for example the music in the file should be
a cover of a previously released song.

	TEXT

	The ‘Lyricist/Text writer’ frame is intended for the writer of the text
or lyrics in the recording.

	TOLY

	The ‘Original lyricist/text writer’ frame is intended for the text
writer of the original recording, if for example the music in the file
should be a cover of a previously released song.

	TCOM

	The ‘Composer’ frame is intended for the name of the composer.

	TMCL

	The ‘Musician credits list’ is intended as a mapping between
instruments and the musician that played it. Every odd field is an
instrument and every even is an artist or a comma delimited list of
artists.

	TIPL

	The ‘Involved people list’ is very similar to the musician credits
list, but maps between functions, like producer, and names.

	TENC

	The ‘Encoded by’ frame contains the name of the person or organisation
that encoded the audio file. This field may contain a copyright
message, if the audio file also is copyrighted by the encoder.

Derived and subjective properties frames

	TBPM

	The ‘BPM’ frame contains the number of beats per minute in the main
part of the audio. The BPM is an integer and represented as a numerical
string.

	TLEN

	The ‘Length’ frame contains the length of the audio file in
milliseconds, represented as a numeric string.

	TKEY

	The ‘Initial key’ frame contains the musical key in which the sound
starts. It is represented as a string with a maximum length of three
characters. The ground keys are represented with “A”,”B”,”C”,”D”,”E”,
“F” and “G” and halfkeys represented with “b” and “#”. Minor is
represented as “m”, e.g. “Dbm” $00. Off key is represented with an “o”
only.

	TLAN

	The ‘Language’ frame should contain the languages of the text or lyrics
spoken or sung in the audio. The language is represented with three
characters according to ISO-639-2 [ISO-639-2]. If more than one
language is used in the text their language codes should follow
according to the amount of their usage, e.g. “eng” $00 “sve” $00.

	TCON

	The ‘Content type’, which ID3v1 was stored as a one byte numeric value
only, is now a string. You may use one or several of the ID3v1 types as
numerical strings, or, since the category list would be impossible to
maintain with accurate and up to date categories, define your own.
Example: “21” $00 “Eurodisco” $00

You may also use any of the following keywords:

RX Remix

CR Cover

	TFLT

	
The ‘File type’ frame indicates which type of audio this tag defines.
The following types and refinements are defined:

MIME MIME type follows

MPG MPEG Audio

	/1
	MPEG 1/2 layer I

	/2
	MPEG 1/2 layer II

	/3
	MPEG 1/2 layer III

	/2.5
	MPEG 2.5

	/AAC
	Advanced audio compression

VQF Transform-domain Weighted Interleave Vector Quantisation

PCM Pulse Code Modulated audio

but other types may be used, but not for these types though. This is
used in a similar way to the predefined types in the “TMED” frame,
but without parentheses. If this frame is not present audio type is
assumed to be “MPG”.

	TMED

	The ‘Media type’ frame describes from which media the sound originated.
This may be a text string or a reference to the predefined media types
found in the list below. Example: “VID/PAL/VHS” $00.

	DIG Other digital media

	

	
/A
	Analogue transfer from media

	ANA Other analogue media

	

	
/WAC
	Wax cylinder

	
/8CA
	8-track tape cassette

	CD CD

	

	
/A
	Analogue transfer from media

	
/DD
	DDD

	
/AD
	ADD

	
/AA
	AAD

LD Laserdisc

	TT Turntable records

	

	
/33
	33.33 rpm

	
/45
	45 rpm

	
/71
	71.29 rpm

	
/76
	76.59 rpm

	
/78
	78.26 rpm

	
/80
	80 rpm

	MD MiniDisc

	

	
/A
	Analogue transfer from media

	DAT DAT

	

	
/A
	Analogue transfer from media

	
/1
	standard, 48 kHz/16 bits, linear

	
/2
	mode 2, 32 kHz/16 bits, linear

	
/3
	mode 3, 32 kHz/12 bits, non-linear, low speed

	
/4
	mode 4, 32 kHz/12 bits, 4 channels

	
/5
	mode 5, 44.1 kHz/16 bits, linear

	
/6
	mode 6, 44.1 kHz/16 bits, ‘wide track’ play

	DCC DCC

	

	
/A
	Analogue transfer from media

	DVD DVD

	

	
/A
	Analogue transfer from media

	TV Television

	

	
/PAL
	PAL

	
/NTSC
	NTSC

	
/SECAM
	SECAM

	VID Video

	

	
/PAL
	PAL

	
/NTSC
	NTSC

	
/SECAM
	SECAM

	
/VHS
	VHS

	
/SVHS
	S-VHS

	
/BETA
	BETAMAX

	RAD Radio

	

	
/FM
	FM

	
/AM
	AM

	
/LW
	LW

	
/MW
	MW

	TEL Telephone

	

	
/I
	ISDN

	MC MC (normal cassette)

	

	
/4
	4.75 cm/s (normal speed for a two sided cassette)

	
/9
	9.5 cm/s

	
/I
	Type I cassette (ferric/normal)

	
/II
	Type II cassette (chrome)

	
/III
	Type III cassette (ferric chrome)

	
/IV
	Type IV cassette (metal)

	REE Reel

	

	
/9
	9.5 cm/s

	
/19
	19 cm/s

	
/38
	38 cm/s

	
/76
	76 cm/s

	
/I
	Type I cassette (ferric/normal)

	
/II
	Type II cassette (chrome)

	
/III
	Type III cassette (ferric chrome)

	
/IV
	Type IV cassette (metal)

	TMOO

	The ‘Mood’ frame is intended to reflect the mood of the audio with a
few keywords, e.g. “Romantic” or “Sad”.

Rights and license frames

	TCOP

	The ‘Copyright message’ frame, in which the string must begin with a
year and a space character (making five characters), is intended for
the copyright holder of the original sound, not the audio file itself.
The absence of this frame means only that the copyright information is
unavailable or has been removed, and must not be interpreted to mean
that the audio is public domain. Every time this field is displayed the
field must be preceded with “Copyright ” (C) ” ”, where (C) is one
character showing a C in a circle.

	TPRO

	The ‘Produced notice’ frame, in which the string must begin with a year
and a space character (making five characters), is intended for the
production copyright holder of the original sound, not the audio file
itself. The absence of this frame means only that the production
copyright information is unavailable or has been removed, and must not
be interpreted to mean that the audio is public domain. Every time this
field is displayed the field must be preceded with “Produced ” (P) ” ”,
where (P) is one character showing a P in a circle.

	TPUB

	The ‘Publisher’ frame simply contains the name of the label or publisher.

	TOWN

	The ‘File owner/licensee’ frame contains the name of the owner or
licensee of the file and it’s contents.

	TRSN

	The ‘Internet radio station name’ frame contains the name of the
internet radio station from which the audio is streamed.

	TRSO

	The ‘Internet radio station owner’ frame contains the name of the owner
of the internet radio station from which the audio is streamed.

Other text frames

	TOFN

	The ‘Original filename’ frame contains the preferred filename for the
file, since some media doesn’t allow the desired length of the
filename. The filename is case sensitive and includes its suffix.

	TDLY

	The ‘Playlist delay’ defines the numbers of milliseconds of silence
that should be inserted before this audio. The value zero indicates
that this is a part of a multifile audio track that should be played
continuously.

	TDEN

	The ‘Encoding time’ frame contains a timestamp describing when the
audio was encoded. Timestamp format is described in the ID3v2 structure
document [ID3v2-strct].

	TDOR

	The ‘Original release time’ frame contains a timestamp describing when
the original recording of the audio was released. Timestamp format is
described in the ID3v2 structure document [ID3v2-strct].

	TDRC

	The ‘Recording time’ frame contains a timestamp describing when the
audio was recorded. Timestamp format is described in the ID3v2
structure document [ID3v2-strct].

	TDRL

	The ‘Release time’ frame contains a timestamp describing when the audio
was first released. Timestamp format is described in the ID3v2
structure document [ID3v2-strct].

	TDTG

	The ‘Tagging time’ frame contains a timestamp describing then the audio
was tagged. Timestamp format is described in the ID3v2 structure
document [ID3v2-strct].

	TSSE

	The ‘Software/Hardware and settings used for encoding’ frame includes
the used audio encoder and its settings when the file was encoded.
Hardware refers to hardware encoders, not the computer on which a
program was run.

	TSOA

	The ‘Album sort order’ frame defines a string which should be used
instead of the album name (TALB) for sorting purposes. E.g. an album
named “A Soundtrack” might preferably be sorted as “Soundtrack”.

	TSOP

	The ‘Performer sort order’ frame defines a string which should be used
instead of the performer (TPE2) for sorting purposes.

	TSOT

	The ‘Title sort order’ frame defines a string which should be used
instead of the title (TIT2) for sorting purposes.

User defined text information frame

This frame is intended for one-string text information concerning the audio
file in a similar way to the other “T”-frames. The frame body consists of a
description of the string, represented as a terminated string, followed by
the actual string. There may be more than one “TXXX” frame in each tag, but
only one with the same description.

<Header for 'User defined text information frame', ID: "TXXX">
Text encoding $xx
Description <text string according to encoding> $00 (00)
Value <text string according to encoding>

URL link frames

With these frames dynamic data such as webpages with touring information,
price information or plain ordinary news can be added to the tag. There may
only be one URL [URL] link frame of its kind in an tag, except when stated
otherwise in the frame description. If the text string is followed by a
string termination, all the following information should be ignored and not
be displayed. All URL link frame identifiers begins with “W”. Only URL link
frame identifiers begins with “W”, except for “WXXX”. All URL link frames
have the following format:

<Header for 'URL link frame', ID: "W000" - "WZZZ", excluding "WXXX"
described in 4.3.2.>
URL <text string>

URL link frames - details

	WCOM

	The ‘Commercial information’ frame is a URL pointing at a webpage with
information such as where the album can be bought. There may be more
than one “WCOM” frame in a tag, but not with the same content.

	WCOP

	The ‘Copyright/Legal information’ frame is a URL pointing at a webpage
where the terms of use and ownership of the file is described.

	WOAF

	The ‘Official audio file webpage’ frame is a URL pointing at a file
specific webpage.

	WOAR

	The ‘Official artist/performer webpage’ frame is a URL pointing at the
artists official webpage. There may be more than one “WOAR” frame in a
tag if the audio contains more than one performer, but not with the
same content.

	WOAS

	The ‘Official audio source webpage’ frame is a URL pointing at the
official webpage for the source of the audio file, e.g. a movie.

	WORS

	The ‘Official Internet radio station homepage’ contains a URL pointing
at the homepage of the internet radio station.

	WPAY

	The ‘Payment’ frame is a URL pointing at a webpage that will handle the
process of paying for this file.

	WPUB

	The ‘Publishers official webpage’ frame is a URL pointing at the
official webpage for the publisher.

User defined URL link frame

This frame is intended for URL [URL] links concerning the audio file in a
similar way to the other “W”-frames. The frame body consists of a
description of the string, represented as a terminated string, followed by
the actual URL. The URL is always encoded with ISO-8859-1 [ISO-8859-1].
There may be more than one “WXXX” frame in each tag, but only one with the
same description.

<Header for 'User defined URL link frame', ID: "WXXX">
Text encoding $xx
Description <text string according to encoding> $00 (00)
URL <text string>

Music CD identifier

This frame is intended for music that comes from a CD, so that the CD can
be identified in databases such as the CDDB [CDDB]. The frame consists of a
binary dump of the Table Of Contents, TOC, from the CD, which is a header
of 4 bytes and then 8 bytes/track on the CD plus 8 bytes for the ‘lead
out’, making a maximum of 804 bytes. The offset to the beginning of every
track on the CD should be described with a four bytes absolute CD-frame
address per track, and not with absolute time. When this frame is used the
presence of a valid “TRCK” frame is REQUIRED, even if the CD’s only got one
track. It is recommended that this frame is always added to tags
originating from CDs. There may only be one “MCDI” frame in each tag.

<Header for 'Music CD identifier', ID: "MCDI">
CD TOC <binary data>

Event timing codes

This frame allows synchronisation with key events in the audio. The header is:

<Header for 'Event timing codes', ID: "ETCO">
Time stamp format $xx

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Absolute time means that every stamp contains the time from the beginning
of the file.

Followed by a list of key events in the following format:

Type of event $xx
Time stamp $xx (xx ...)

The ‘Time stamp’ is set to zero if directly at the beginning of the sound
or after the previous event. All events MUST be sorted in chronological
order. The type of event is as follows:

$00 padding (has no meaning)
$01 end of initial silence
$02 intro start
$03 main part start
$04 outro start
$05 outro end
$06 verse start
$07 refrain start
$08 interlude start
$09 theme start
$0A variation start
$0B key change
$0C time change
$0D momentary unwanted noise (Snap, Crackle & Pop)
$0E sustained noise
$0F sustained noise end
$10 intro end
$11 main part end
$12 verse end
$13 refrain end
$14 theme end
$15 profanity
$16 profanity end

$17-$DF reserved for future use

$E0-$EF not predefined synch 0-F

$F0-$FC reserved for future use

$FD audio end (start of silence)
$FE audio file ends
$FF one more byte of events follows (all the following bytes with
 the value $FF have the same function)

Terminating the start events such as “intro start” is OPTIONAL. The ‘Not
predefined synch’s ($E0-EF) are for user events. You might want to
synchronise your music to something, like setting off an explosion
on-stage, activating a screensaver etc.

There may only be one “ETCO” frame in each tag.

MPEG location lookup table

To increase performance and accuracy of jumps within a MPEG [MPEG] audio
file, frames with time codes in different locations in the file might be
useful. This ID3v2 frame includes references that the software can use to
calculate positions in the file. After the frame header follows a
descriptor of how much the ‘frame counter’ should be increased for every
reference. If this value is two then the first reference points out the
second frame, the 2nd reference the 4th frame, the 3rd reference the 6th
frame etc. In a similar way the ‘bytes between reference’ and ‘milliseconds
between reference’ points out bytes and milliseconds respectively.

Each reference consists of two parts; a certain number of bits, as defined
in ‘bits for bytes deviation’, that describes the difference between what
is said in ‘bytes between reference’ and the reality and a certain number
of bits, as defined in ‘bits for milliseconds deviation’, that describes
the difference between what is said in ‘milliseconds between reference’ and
the reality. The number of bits in every reference, i.e. ‘bits for bytes
deviation’+’bits for milliseconds deviation’, must be a multiple of four.
There may only be one “MLLT” frame in each tag.

<Header for 'Location lookup table', ID: "MLLT">
MPEG frames between reference $xx xx
Bytes between reference $xx xx xx
Milliseconds between reference $xx xx xx
Bits for bytes deviation $xx
Bits for milliseconds dev. $xx

Then for every reference the following data is included;

Deviation in bytes %xxx....
Deviation in milliseconds %xxx....

Synchronised tempo codes

For a more accurate description of the tempo of a musical piece, this frame
might be used. After the header follows one byte describing which time
stamp format should be used. Then follows one or more tempo codes. Each
tempo code consists of one tempo part and one time part. The tempo is in
BPM described with one or two bytes. If the first byte has the value $FF,
one more byte follows, which is added to the first giving a range from 2 -
510 BPM, since $00 and $01 is reserved. $00 is used to describe a beat-free
time period, which is not the same as a music-free time period. $01 is used
to indicate one single beat-stroke followed by a beat-free period.

The tempo descriptor is followed by a time stamp. Every time the tempo in
the music changes, a tempo descriptor may indicate this for the player. All
tempo descriptors MUST be sorted in chronological order. The first
beat-stroke in a time-period is at the same time as the beat description
occurs. There may only be one “SYTC” frame in each tag.

<Header for 'Synchronised tempo codes', ID: "SYTC">
Time stamp format $xx
Tempo data <binary data>

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Absolute time means that every stamp contains the time from the beginning
of the file.

Unsynchronised lyrics/text transcription

This frame contains the lyrics of the song or a text transcription of other
vocal activities. The head includes an encoding descriptor and a content
descriptor. The body consists of the actual text. The ‘Content descriptor’
is a terminated string. If no descriptor is entered, ‘Content descriptor’
is $00 (00) only. Newline characters are allowed in the text. There may be
more than one ‘Unsynchronised lyrics/text transcription’ frame in each tag,
but only one with the same language and content descriptor.

<Header for 'Unsynchronised lyrics/text transcription', ID: "USLT">
Text encoding $xx
Language $xx xx xx
Content descriptor <text string according to encoding> $00 (00)
Lyrics/text <full text string according to encoding>

Synchronised lyrics/text

This is another way of incorporating the words, said or sung lyrics, in the
audio file as text, this time, however, in sync with the audio. It might
also be used to describing events e.g. occurring on a stage or on the
screen in sync with the audio. The header includes a content descriptor,
represented with as terminated text string. If no descriptor is entered,
‘Content descriptor’ is $00 (00) only.

<Header for 'Synchronised lyrics/text', ID: "SYLT">
Text encoding $xx
Language $xx xx xx
Time stamp format $xx
Content type $xx
Content descriptor <text string according to encoding> $00 (00)

Content type:

$00 is other
$01 is lyrics
$02 is text transcription
$03 is movement/part name (e.g. "Adagio")
$04 is events (e.g. "Don Quijote enters the stage")
$05 is chord (e.g. "Bb F Fsus")
$06 is trivia/'pop up' information
$07 is URLs to webpages
$08 is URLs to images

Time stamp format:

$01 Absolute time, 32 bit sized, using MPEG [MPEG] frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

Absolute time means that every stamp contains the time from the beginning
of the file.

The text that follows the frame header differs from that of the
unsynchronised lyrics/text transcription in one major way. Each syllable
(or whatever size of text is considered to be convenient by the encoder) is
a null terminated string followed by a time stamp denoting where in the
sound file it belongs. Each sync thus has the following structure:

Terminated text to be synced (typically a syllable)
Sync identifier (terminator to above string) $00 (00)
Time stamp $xx (xx ...)

The ‘time stamp’ is set to zero or the whole sync is omitted if located
directly at the beginning of the sound. All time stamps should be sorted in
chronological order. The sync can be considered as a validator of the
subsequent string.

Newline characters are allowed in all “SYLT” frames and MUST be used after
every entry (name, event etc.) in a frame with the content type $03 - $04.

A few considerations regarding whitespace characters: Whitespace separating
words should mark the beginning of a new word, thus occurring in front of
the first syllable of a new word. This is also valid for new line
characters. A syllable followed by a comma should not be broken apart with
a sync (both the syllable and the comma should be before the sync).

An example: The “USLT” passage

"Strangers in the night" $0A "Exchanging glances"

would be “SYLT” encoded as:

"Strang" $00 xx xx "ers" $00 xx xx " in" $00 xx xx " the" $00 xx xx
" night" $00 xx xx 0A "Ex" $00 xx xx "chang" $00 xx xx "ing" $00 xx
xx "glan" $00 xx xx "ces" $00 xx xx

There may be more than one “SYLT” frame in each tag, but only one with the
same language and content descriptor.

Comments

This frame is intended for any kind of full text information that does not
fit in any other frame. It consists of a frame header followed by encoding,
language and content descriptors and is ended with the actual comment as a
text string. Newline characters are allowed in the comment text string.
There may be more than one comment frame in each tag, but only one with the
same language and content descriptor.

<Header for 'Comment', ID: "COMM">
Text encoding $xx
Language $xx xx xx
Short content descrip. <text string according to encoding> $00 (00)
The actual text <full text string according to encoding>

Relative volume adjustment (2)

This is a more subjective frame than the previous ones. It allows the user
to say how much he wants to increase/decrease the volume on each channel
when the file is played. The purpose is to be able to align all files to a
reference volume, so that you don’t have to change the volume constantly.
This frame may also be used to balance adjust the audio. The volume
adjustment is encoded as a fixed point decibel value, 16 bit signed integer
representing (adjustment*512), giving +/- 64 dB with a precision of
0.001953125 dB. E.g. +2 dB is stored as $04 00 and -2 dB is $FC 00. There
may be more than one “RVA2” frame in each tag, but only one with the same
identification string.

<Header for 'Relative volume adjustment (2)', ID: "RVA2">
Identification <text string> $00

The ‘identification’ string is used to identify the situation and/or device
where this adjustment should apply. The following is then repeated for
every channel

Type of channel $xx
Volume adjustment $xx xx
Bits representing peak $xx
Peak volume $xx (xx ...)

Type of channel:

$00 Other
$01 Master volume
$02 Front right
$03 Front left
$04 Back right
$05 Back left
$06 Front centre
$07 Back centre
$08 Subwoofer

Bits representing peak can be any number between 0 and 255. 0 means that
there is no peak volume field. The peak volume field is always padded to
whole bytes, setting the most significant bits to zero.

Equalisation (2)

This is another subjective, alignment frame. It allows the user to
predefine an equalisation curve within the audio file. There may be more
than one “EQU2” frame in each tag, but only one with the same
identification string.

<Header of 'Equalisation (2)', ID: "EQU2">
Interpolation method $xx
Identification <text string> $00

The ‘interpolation method’ describes which method is preferred when an
interpolation between the adjustment point that follows. The following
methods are currently defined:

$00 Band
 No interpolation is made. A jump from one adjustment level to
 another occurs in the middle between two adjustment points.
$01 Linear
 Interpolation between adjustment points is linear.

The ‘identification’ string is used to identify the situation and/or device
where this adjustment should apply. The following is then repeated for
every adjustment point

Frequency $xx xx
Volume adjustment $xx xx

The frequency is stored in units of 1/2 Hz, giving it a range from 0 to
32767 Hz.

The volume adjustment is encoded as a fixed point decibel value, 16 bit
signed integer representing (adjustment*512), giving +/- 64 dB with a
precision of 0.001953125 dB. E.g. +2 dB is stored as $04 00 and -2 dB is
$FC 00.

Adjustment points should be ordered by frequency and one frequency should
only be described once in the frame.

Reverb

Yet another subjective frame, with which you can adjust echoes of different
kinds. Reverb left/right is the delay between every bounce in ms. Reverb
bounces left/right is the number of bounces that should be made. $FF equals
an infinite number of bounces. Feedback is the amount of volume that should
be returned to the next echo bounce. $00 is 0%, $FF is 100%. If this value
were $7F, there would be 50% volume reduction on the first bounce, 50% of
that on the second and so on. Left to left means the sound from the left
bounce to be played in the left speaker, while left to right means sound
from the left bounce to be played in the right speaker.

‘Premix left to right’ is the amount of left sound to be mixed in the right
before any reverb is applied, where $00 id 0% and $FF is 100%. ‘Premix
right to left’ does the same thing, but right to left. Setting both premix
to $FF would result in a mono output (if the reverb is applied symmetric).
There may only be one “RVRB” frame in each tag.

<Header for 'Reverb', ID: "RVRB">
Reverb left (ms) $xx xx
Reverb right (ms) $xx xx
Reverb bounces, left $xx
Reverb bounces, right $xx
Reverb feedback, left to left $xx
Reverb feedback, left to right $xx
Reverb feedback, right to right $xx
Reverb feedback, right to left $xx
Premix left to right $xx
Premix right to left $xx

Attached picture

This frame contains a picture directly related to the audio file. Image
format is the MIME type and subtype [MIME] for the image. In the event
that the MIME media type name is omitted, “image/” will be implied. The
“image/png” [PNG] or “image/jpeg” [JFIF] picture format should be
used when interoperability is wanted. Description is a short description of
the picture, represented as a terminated text string. There may be several
pictures attached to one file, each in their individual “APIC” frame, but
only one with the same content descriptor. There may only be one picture
with the picture type declared as picture type $01 and $02 respectively.
There is the possibility to put only a link to the image file by using the
‘MIME type’ “–>” and having a complete URL [URL] instead of picture data.
The use of linked files should however be used sparingly since there is the
risk of separation of files.

<Header for 'Attached picture', ID: "APIC">
Text encoding $xx
MIME type <text string> $00
Picture type $xx
Description <text string according to encoding> $00 (00)
Picture data <binary data>

Picture type:

$00 Other
$01 32x32 pixels 'file icon' (PNG only)
$02 Other file icon
$03 Cover (front)
$04 Cover (back)
$05 Leaflet page
$06 Media (e.g. label side of CD)
$07 Lead artist/lead performer/soloist
$08 Artist/performer
$09 Conductor
$0A Band/Orchestra
$0B Composer
$0C Lyricist/text writer
$0D Recording Location
$0E During recording
$0F During performance
$10 Movie/video screen capture
$11 A bright coloured fish
$12 Illustration
$13 Band/artist logotype
$14 Publisher/Studio logotype

General encapsulated object

In this frame any type of file can be encapsulated. After the header,
‘Frame size’ and ‘Encoding’ follows ‘MIME type’ [MIME] represented as as a
terminated string encoded with ISO 8859-1 [ISO-8859-1]. The filename is
case sensitive and is encoded as ‘Encoding’. Then follows a content
description as terminated string, encoded as ‘Encoding’. The last thing in
the frame is the actual object. The first two strings may be omitted,
leaving only their terminations. MIME type is always an ISO-8859-1 text
string. There may be more than one “GEOB” frame in each tag, but only one
with the same content descriptor.

<Header for 'General encapsulated object', ID: "GEOB">
Text encoding $xx
MIME type <text string> $00
Filename <text string according to encoding> $00 (00)
Content description <text string according to encoding> $00 (00)
Encapsulated object <binary data>

Play counter

This is simply a counter of the number of times a file has been played. The
value is increased by one every time the file begins to play. There may
only be one “PCNT” frame in each tag. When the counter reaches all one’s,
one byte is inserted in front of the counter thus making the counter eight
bits bigger. The counter must be at least 32-bits long to begin with.

<Header for 'Play counter', ID: "PCNT">
Counter $xx xx xx xx (xx ...)

Popularimeter

The purpose of this frame is to specify how good an audio file is. Many
interesting applications could be found to this frame such as a playlist
that features better audio files more often than others or it could be used
to profile a person’s taste and find other ‘good’ files by comparing
people’s profiles. The frame contains the email address to the user, one
rating byte and a four byte play counter, intended to be increased with one
for every time the file is played. The email is a terminated string. The
rating is 1-255 where 1 is worst and 255 is best. 0 is unknown. If no
personal counter is wanted it may be omitted. When the counter reaches all
one’s, one byte is inserted in front of the counter thus making the counter
eight bits bigger in the same away as the play counter (“PCNT”). There may
be more than one “POPM” frame in each tag, but only one with the same email
address.

<Header for 'Popularimeter', ID: "POPM">
Email to user <text string> $00
Rating $xx
Counter $xx xx xx xx (xx ...)

Recommended buffer size

Sometimes the server from which an audio file is streamed is aware of
transmission or coding problems resulting in interruptions in the audio
stream. In these cases, the size of the buffer can be recommended by the
server using this frame. If the ‘embedded info flag’ is true (1) then this
indicates that an ID3 tag with the maximum size described in ‘Buffer size’
may occur in the audio stream. In such case the tag should reside between
two MPEG [MPEG] frames, if the audio is MPEG encoded. If the position of
the next tag is known, ‘offset to next tag’ may be used. The offset is
calculated from the end of tag in which this frame resides to the first
byte of the header in the next. This field may be omitted. Embedded tags
are generally not recommended since this could render unpredictable
behaviour from present software/hardware.

For applications like streaming audio it might be an idea to embed tags
into the audio stream though. If the clients connects to individual
connections like HTTP and there is a possibility to begin every
transmission with a tag, then this tag should include a ‘recommended buffer
size’ frame. If the client is connected to a arbitrary point in the stream,
such as radio or multicast, then the ‘recommended buffer size’ frame SHOULD
be included in every tag.

The ‘Buffer size’ should be kept to a minimum. There may only be one “RBUF”
frame in each tag.

<Header for 'Recommended buffer size', ID: "RBUF">
Buffer size $xx xx xx
Embedded info flag %0000000x
Offset to next tag $xx xx xx xx

Audio encryption

This frame indicates if the actual audio stream is encrypted, and by whom.
Since standardisation of such encryption scheme is beyond this document,
all “AENC” frames begin with a terminated string with a URL containing an
email address, or a link to a location where an email address can be found,
that belongs to the organisation responsible for this specific encrypted
audio file. Questions regarding the encrypted audio should be sent to the
email address specified. If a $00 is found directly after the ‘Frame size’
and the audio file indeed is encrypted, the whole file may be considered
useless.

After the ‘Owner identifier’, a pointer to an unencrypted part of the audio
can be specified. The ‘Preview start’ and ‘Preview length’ is described in
frames. If no part is unencrypted, these fields should be left zeroed.
After the ‘preview length’ field follows optionally a data block required
for decryption of the audio. There may be more than one “AENC” frames in a
tag, but only one with the same ‘Owner identifier’.

<Header for 'Audio encryption', ID: "AENC">
Owner identifier <text string> $00
Preview start $xx xx
Preview length $xx xx
Encryption info <binary data>

Linked information

To keep information duplication as low as possible this frame may be used
to link information from another ID3v2 tag that might reside in another
audio file or alone in a binary file. It is RECOMMENDED that this method is
only used when the files are stored on a CD-ROM or other circumstances when
the risk of file separation is low. The frame contains a frame identifier,
which is the frame that should be linked into this tag, a URL [URL] field,
where a reference to the file where the frame is given, and additional ID
data, if needed. Data should be retrieved from the first tag found in the
file to which this link points. There may be more than one “LINK” frame in
a tag, but only one with the same contents. A linked frame is to be
considered as part of the tag and has the same restrictions as if it was a
physical part of the tag (i.e. only one “RVRB” frame allowed, whether it’s
linked or not).

<Header for 'Linked information', ID: "LINK">
Frame identifier $xx xx xx xx
URL <text string> $00
ID and additional data <text string(s)>

Frames that may be linked and need no additional data are “ASPI”, “ETCO”,
“EQU2”, “MCID”, “MLLT”, “OWNE”, “RVA2”, “RVRB”, “SYTC”, the text
information frames and the URL link frames.

The “AENC”, “APIC”, “GEOB” and “TXXX” frames may be linked with the content
descriptor as additional ID data.

The “USER” frame may be linked with the language field as additional ID data.

The “PRIV” frame may be linked with the owner identifier as additional ID
data.

The “COMM”, “SYLT” and “USLT” frames may be linked with three bytes of
language descriptor directly followed by a content descriptor as additional
ID data.

Position synchronisation frame

This frame delivers information to the listener of how far into the
audio stream he picked up; in effect, it states the time offset from
the first frame in the stream. The frame layout is:

<Head for 'Position synchronisation', ID: "POSS">
Time stamp format $xx
Position $xx (xx ...)

Where time stamp format is:

$01 Absolute time, 32 bit sized, using MPEG frames as unit
$02 Absolute time, 32 bit sized, using milliseconds as unit

and position is where in the audio the listener starts to receive, i.e. the
beginning of the next frame. If this frame is used in the beginning of a
file the value is always 0. There may only be one “POSS” frame in each tag.

Terms of use frame

This frame contains a brief description of the terms of use and
ownership of the file. More detailed information concerning the legal
terms might be available through the “WCOP” frame. Newlines are
allowed in the text. There may be more than one ‘Terms of use’ frame
in a tag, but only one with the same ‘Language’.

<Header for 'Terms of use frame', ID: "USER">
Text encoding $xx
Language $xx xx xx
The actual text <text string according to encoding>

Ownership frame

The ownership frame might be used as a reminder of a made transaction or,
if signed, as proof. Note that the “USER” and “TOWN” frames are good to use
in conjunction with this one. The frame begins, after the frame ID, size
and encoding fields, with a ‘price paid’ field. The first three characters
of this field contains the currency used for the transaction, encoded
according to ISO 4217 [ISO-4217] alphabetic currency code. Concatenated to
this is the actual price paid, as a numerical string using ”.” as the
decimal separator. Next is an 8 character date string (YYYYMMDD) followed
by a string with the name of the seller as the last field in the frame.
There may only be one “OWNE” frame in a tag.

<Header for 'Ownership frame', ID: "OWNE">
Text encoding $xx
Price paid <text string> $00
Date of purch. <text string>
Seller <text string according to encoding>

Commercial frame

This frame enables several competing offers in the same tag by bundling all
needed information. That makes this frame rather complex but it’s an easier
solution than if one tries to achieve the same result with several frames.
The frame begins, after the frame ID, size and encoding fields, with a
price string field. A price is constructed by one three character currency
code, encoded according to ISO 4217 [ISO-4217] alphabetic currency code,
followed by a numerical value where ”.” is used as decimal separator. In
the price string several prices may be concatenated, separated by a “/”
character, but there may only be one currency of each type.

The price string is followed by an 8 character date string in the format
YYYYMMDD, describing for how long the price is valid. After that is a
contact URL, with which the user can contact the seller, followed by a one
byte ‘received as’ field. It describes how the audio is delivered when
bought according to the following list:

$00 Other
$01 Standard CD album with other songs
$02 Compressed audio on CD
$03 File over the Internet
$04 Stream over the Internet
$05 As note sheets
$06 As note sheets in a book with other sheets
$07 Music on other media
$08 Non-musical merchandise

Next follows a terminated string with the name of the seller followed by a
terminated string with a short description of the product. The last thing
is the ability to include a company logotype. The first of them is the
‘Picture MIME type’ field containing information about which picture format
is used. In the event that the MIME media type name is omitted, “image/”
will be implied. Currently only “image/png” and “image/jpeg” are allowed.
This format string is followed by the binary picture data. This two last
fields may be omitted if no picture is attached. There may be more than one
‘commercial frame’ in a tag, but no two may be identical.

<Header for 'Commercial frame', ID: "COMR">
Text encoding $xx
Price string <text string> $00
Valid until <text string>
Contact URL <text string> $00
Received as $xx
Name of seller <text string according to encoding> $00 (00)
Description <text string according to encoding> $00 (00)
Picture MIME type <string> $00
Seller logo <binary data>

Encryption method registration

To identify with which method a frame has been encrypted the
encryption method must be registered in the tag with this frame. The
‘Owner identifier’ is a null-terminated string with a URL [URL]
containing an email address, or a link to a location where an email
address can be found, that belongs to the organisation responsible
for this specific encryption method. Questions regarding the
encryption method should be sent to the indicated email address. The
‘Method symbol’ contains a value that is associated with this method
throughout the whole tag, in the range $80-F0. All other values are
reserved. The ‘Method symbol’ may optionally be followed by
encryption specific data. There may be several “ENCR” frames in a tag
but only one containing the same symbol and only one containing the
same owner identifier. The method must be used somewhere in the tag.
See the description of the frame encryption flag in the ID3v2
structure document [ID3v2-strct] for more information.

<Header for 'Encryption method registration', ID: "ENCR">
Owner identifier <text string> $00
Method symbol $xx
Encryption data <binary data>

Group identification registration

This frame enables grouping of otherwise unrelated frames. This can
be used when some frames are to be signed. To identify which frames
belongs to a set of frames a group identifier must be registered in
the tag with this frame. The ‘Owner identifier’ is a null-terminated
string with a URL [URL] containing an email address, or a link to a
location where an email address can be found, that belongs to the
organisation responsible for this grouping. Questions regarding the
grouping should be sent to the indicated email address. The ‘Group
symbol’ contains a value that associates the frame with this group
throughout the whole tag, in the range $80-F0. All other values are
reserved. The ‘Group symbol’ may optionally be followed by some group
specific data, e.g. a digital signature. There may be several “GRID”
frames in a tag but only one containing the same symbol and only one
containing the same owner identifier. The group symbol must be used
somewhere in the tag. See the description of the frame grouping flag
in the ID3v2 structure document [ID3v2-strct] for more information.

<Header for 'Group ID registration', ID: "GRID">
Owner identifier <text string> $00
Group symbol $xx
Group dependent data <binary data>

Private frame

This frame is used to contain information from a software producer
that its program uses and does not fit into the other frames. The
frame consists of an ‘Owner identifier’ string and the binary data.
The ‘Owner identifier’ is a null-terminated string with a URL [URL]
containing an email address, or a link to a location where an email
address can be found, that belongs to the organisation responsible
for the frame. Questions regarding the frame should be sent to the
indicated email address. The tag may contain more than one “PRIV”
frame but only with different contents.

<Header for 'Private frame', ID: "PRIV">
Owner identifier <text string> $00
The private data <binary data>

Signature frame

This frame enables a group of frames, grouped with the ‘Group
identification registration’, to be signed. Although signatures can reside
inside the registration frame, it might be desired to store the signature
elsewhere, e.g. in watermarks. There may be more than one ‘signature frame’
in a tag, but no two may be identical.

<Header for 'Signature frame', ID: "SIGN">
Group symbol $xx
Signature <binary data>

Seek frame

This frame indicates where other tags in a file/stream can be found. The
‘minimum offset to next tag’ is calculated from the end of this tag to the
beginning of the next. There may only be one ‘seek frame’ in a tag.

<Header for 'Seek frame', ID: "SEEK">
Minimum offset to next tag $xx xx xx xx

Audio seek point index

Audio files with variable bit rates are intrinsically difficult to deal
with in the case of seeking within the file. The ASPI frame makes seeking
easier by providing a list a seek points within the audio file. The seek
points are a fractional offset within the audio data, providing a starting
point from which to find an appropriate point to start decoding. The
presence of an ASPI frame requires the existence of a TLEN frame,
indicating the duration of the file in milliseconds. There may only be one
‘audio seek point index’ frame in a tag.

<Header for 'Seek Point Index', ID: "ASPI">
Indexed data start (S) $xx xx xx xx
Indexed data length (L) $xx xx xx xx
Number of index points (N) $xx xx
Bits per index point (b) $xx

Then for every index point the following data is included;

Fraction at index (Fi) $xx (xx)

‘Indexed data start’ is a byte offset from the beginning of the file.
‘Indexed data length’ is the byte length of the audio data being indexed.
‘Number of index points’ is the number of index points, as the name
implies. The recommended number is 100. ‘Bits per index point’ is 8 or 16,
depending on the chosen precision. 8 bits works well for short files (less
than 5 minutes of audio), while 16 bits is advantageous for long files.
‘Fraction at index’ is the numerator of the fraction representing a
relative position in the data. The denominator is 2 to the power of b.

Here are the algorithms to be used in the calculation. The known data must
be the offset of the start of the indexed data (S), the offset of the end
of the indexed data (E), the number of index points (N), the offset at
index i (Oi). We calculate the fraction at index i (Fi).

Oi is the offset of the frame whose start is soonest after the point for
which the time offset is (i/N * duration).

The frame data should be calculated as follows:

Fi = Oi/L * 2^b (rounded down to the nearest integer)

Offset calculation should be calculated as follows from data in the frame:

Oi = (Fi/2^b)*L (rounded up to the nearest integer)

Copyright

Copyright (C) Martin Nilsson 2000. All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that a
reference to this document is included on all such copies and derivative
works. However, this document itself may not be modified in any way and
reissued as the original document.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided on an “AS
IS” basis and THE AUTHORS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

References

	CDDB

	Compact Disc Data Base [http://www.cddb.com]

	ID3v2.3.0

	Martin Nilsson, ID3v2 informal standard [http://www.id3.org/id3v2.3.0.txt]

	ID3v2-strct

	Martin Nilsson, ID3 tag version 2.4.0 - Main Structure

	ISO-639-2

	ISO/FDIS 639-2. Codes for the representation of names of languages,
Part 2: Alpha-3 code. Technical committee / subcommittee: TC 37 / SC 2

	ISO-4217

	ISO 4217:1995. Codes for the representation of currencies and funds.
Technical committee / subcommittee: TC 68

	ISO-8859-1

	ISO/IEC DIS 8859-1. 8-bit single-byte coded graphic character sets,
Part 1: Latin alphabet No. 1. Technical committee / subcommittee: JTC 1
/ SC 2

	ISRC

	ISO 3901:1986 International Standard Recording Code (ISRC). Technical
committee / subcommittee: TC 46 / SC 9

	JFIF

	JPEG File Interchange Format, version 1.02 [http://www.w3.org/Graphics/JPEG/jfif.txt]

	KEYWORDS

	S. Bradner, Key words for use in RFCs to Indicate Requirement Levels [ftp://ftp.isi.edu/in-notes/rfc2119.txt], RFC 2119, March 1997.

	MIME

	Freed, N. and N. Borenstein, Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies [ftp://ftp.isi.edu/in-notes/rfc2045.txt] RFC 2045, November 1996.

	MPEG

	ISO/IEC 11172-3:1993. Coding of moving pictures and associated audio
for digital storage media at up to about 1,5 Mbit/s, Part 3: Audio.
Technical committee / subcommittee: JTC 1 / SC 29

and

ISO/IEC 13818-3:1995 Generic coding of moving pictures and associated
audio information, Part 3: Audio. Technical committee / subcommittee:
JTC 1 / SC 29

and

ISO/IEC DIS 13818-3 Generic coding of moving pictures and associated
audio information, Part 3: Audio (Revision of ISO/IEC 13818-3:1995)

	PNG

	Portable Network Graphics, version 1.0 [http://www.w3.org/TR/REC-png-multi.html]

	URL

	T. Berners-Lee, L. Masinter & M. McCahill, Uniform Resource Locators
(URL). [ftp://ftp.isi.edu/in-notes/rfc1738.txt], RFC 1738, December
1994.

	ZLIB

	P. Deutsch, Aladdin Enterprises & J-L. Gailly, ZLIB Compressed Data
Format Specification version 3.3 [ftp://ftp.isi.edu/in-notes/rfc1950.txt], RFC 1950, May 1996.

Appendix

Appendix A - Genre List from ID3v1

The following genres is defined in ID3v1

	Blues

	Classic Rock

	Country

	Dance

	Disco

	Funk

	Grunge

	Hip-Hop

	Jazz

	Metal

	New Age

	Oldies

	Other

	Pop

	R&B

	Rap

	Reggae

	Rock

	Techno

	Industrial

	Alternative

	Ska

	Death Metal

	Pranks

	Soundtrack

	Euro-Techno

	Ambient

	Trip-Hop

	Vocal

	Jazz+Funk

	Fusion

	Trance

	Classical

	Instrumental

	Acid

	House

	Game

	Sound Clip

	Gospel

	Noise

	AlternRock

	Bass

	Soul

	Punk

	Space

	Meditative

	Instrumental Pop

	Instrumental Rock

	Ethnic

	Gothic

	Darkwave

	Techno-Industrial

	Electronic

	Pop-Folk

	Eurodance

	Dream

	Southern Rock

	Comedy

	Cult

	Gangsta

	Top 40

	Christian Rap

	Pop/Funk

	Jungle

	Native American

	Cabaret

	New Wave

	Psychadelic

	Rave

	Showtunes

	Trailer

	Lo-Fi

	Tribal

	Acid Punk

	Acid Jazz

	Polka

	Retro

	Musical

	Rock & Roll

	Hard Rock

Author’s Address

Written by

Martin Nilsson

Rydsvägen 246 C. 30

SE-584 34 Linköping

Sweden

Email: nilsson at id3.org

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3v2 Chapters 1.0

Status of this document

This document is an addendum to the ID3v2.3 and ID3v2.4 standards.
Distribution of this document is unlimited.

Abstract

This document describes a method for signalling chapters and a table of
contents within an audio file using two new ID3v2 frames. The frames allow
listeners to navigate to specific locations in an audio file and can
provide descriptive information, URLs and images related to each chapter.

Conventions in this document

Text within “” is a text string exactly as it appears in a tag. Numbers
preceded with $ are hexadecimal and numbers preceded with % are binary. $xx
is used to indicate a byte with unknown content. %x is used to indicate a
bit with unknown content. The most significant bit (MSB) of a byte is
called ‘bit 7’ and the least significant bit (LSB) is called ‘bit 0’.

A tag is the whole tag described the ID3v2 main structure document [v2.4].
A frame is a block of information in the tag. The tag consists of a header,
frames and optional padding. A field is a piece of information; one value,
a string etc. A numeric string is a string that consists of the characters
“0123456789” only.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119 [KEYWORDS].

Declared ID3v2 frames

Chapter frame

The purpose of this frame is to describe a single chapter within an audio
file. There may be more than one frame of this type in a tag but each must
have an Element ID that is unique with respect to any other “CHAP” frame or
“CTOC” frame in the tag.

<ID3v2.3 or ID3v2.4 frame header, ID: "CHAP"> (10 bytes)
Element ID <text string> $00
Start time $xx xx xx xx
End time $xx xx xx xx
Start offset $xx xx xx xx
End offset $xx xx xx xx
<Optional embedded sub-frames>

The Element ID uniquely identifies the frame. It is not intended to be
human readable and should not be presented to the end user.

The Start and End times are a count in milliseconds from the beginning of
the file to the start and end of the chapter respectively.

The Start offset is a zero-based count of bytes from the beginning of the
file to the first byte of the first audio frame in the chapter. If these
bytes are all set to 0xFF then the value should be ignored and the start
time value should be utilized.

The End offset is a zero-based count of bytes from the beginning of the
file to the first byte of the audio frame following the end of the chapter.
If these bytes are all set to 0xFF then the value should be ignored and the
end time value should be utilized.

There then follows a sequence of optional frames that are embedded within
the “CHAP” frame and which describe the content of the chapter (e.g. a
“TIT2” frame representing the chapter name) or provide related material
such as URLs and images. These sub-frames are contained within the bounds
of the “CHAP” frame as signalled by the size field in the “CHAP” frame
header. If a parser does not recognise “CHAP” frames it can skip them using
the size field in the frame header. When it does this it will skip any
embedded sub-frames carried within the frame.

Figure 1 shows an example of a “CHAP” frame containing two embedded
sub-frames. The first is a “TIT2” sub-frame providing the chapter name;
“Chapter 1 - Loomings”. The second is a “TIT3” sub-frame providing a
description of the chapter; “Anticipation of the hunt”.

[image: ../_images/CHAPFrame-1.0.png]
Figure 1: Example CHAP frame

Table of contents frame

The purpose of “CTOC” frames is to allow a table of contents to be defined.
In the simplest case, a single “CTOC” frame can be used to provide a flat
(single-level) table of contents. However, multiple “CTOC” frames can also
be used to define a hierarchical (multi-level) table of contents.

There may be more than one frame of this type in a tag but each must have
an Element ID that is unique with respect to any other “CTOC” or “CHAP”
frame in the tag.

Each “CTOC” frame represents one level or element of a table of contents by
providing a list of Child Element IDs. These match the Element IDs of other
“CHAP” and “CTOC” frames in the tag.

<ID3v2.3 or ID3v2.4 frame header, ID: "CTOC"> (10 bytes)
Element ID <text string> $00
Flags %000000ab
Entry count $xx (8-bit unsigned int)
<Child Element ID list>
<Optional embedded sub-frames>

The Element ID uniquely identifies the frame. It is not intended to be
human readable and should not be presented to the end-user.

	Flag a - Top-level bit

	This is set to 1 to identify the top-level “CTOC” frame. This frame is
the root of the Table of Contents tree and is not a child of any other
“CTOC” frame. Only one “CTOC” frame in an ID3v2 tag can have this bit
set to 1. In all other “CTOC” frames this bit shall be set to 0.

	Flag b - Ordered bit

	This should be set to 1 if the entries in the Child Element ID list are
ordered or set to 0 if they not are ordered. This provides a hint as to
whether the elements should be played as a continuous ordered sequence
or played individually. The Entry count is the number of entries in the
Child Element ID list that follows and must be greater than zero. Each
entry in the list consists of:

Child Element ID <text string> $00

The last entry in the child Element ID list is followed by a sequence
of optional frames that are embedded within the “CTOC” frame and which
describe this element of the table of contents (e.g. a “TIT2” frame
representing the name of the element) or provide related material such
as URLs and images. These sub-frames are contained within the bounds of
the “CTOC” frame as signalled by the size field in the “CTOC” frame
header.

If a parser does not recognise “CTOC” frames it can skip them using the
size field in the frame header. When it does this it will skip any
embedded sub-frames carried within the frame.

Figure 2 shows an example of a “CTOC” frame which references a sequence of
chapters. It contains a single “TIT2” sub-frame which provides a name for
this element of the table of contents; “Part 1”.

[image: ../_images/CTOCFrame-1.0.png]
Figure 2: Example CTOC frame

Notes

	It is possible for “CHAP” frames to describe chapters that overlap or
have gaps between them.

	It is permitted to include “CHAP” frames that are not referenced by any
“CTOC” frames. For example, these might be used to provide images that
can be presented in synchronisation with the audio, rather than to
support a table of contents.

	It is recommended that “CHAP” and “CTOC” frames should include a TIT2
sub-frame to provide a human readable identifier which can be presented
to the end-user to aid navigation and selection.

Copyright

Copyright BBC Research & Development and Dan O’Neill, 2005. All Rights
Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that a
reference to this document is included on all such copies and derivative
works. However, this document itself may not be modified in any way and
reissued as the original document.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided on an “AS
IS” basis and THE AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

References

[v2.3] Martin Nilsson, ID3 tag version 2.3.0.

[v2.4] Martin Nilsson, ID3 tag version 2.4.0 - Main Structure.

[KEYWORDS] S. Bradner, ‘Key words for use in RFCs to Indicate Requirement
Levels’, RFC 2119, March 1997.

Author’s Address

Chris Newell

BBC Research & Development

Kingswood Warren

Tadworth

Surrey

KT20 6NP

UK

Email: chris.newell at rd.bbc.co.uk

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3v2 Accessibility 1.0

Status of this document

This document is a proposed addendum to the ID3v2.3 and ID3v2.4 standards.
Distribution of this document is unlimited.

Abstract

This document describes extensions which make ID3v2 metadata accessible to
the visually impaired. The approach may also be useful for audio players
which have limited display capabilities. A new frame type is proposed that
carries an audio clip which can provide a verbal expression of the textual
information carried by another ID3v2 frame.

Conventions in this document

Text within “” is a text string exactly as it appears in a tag. Numbers
preceded with $ are hexadecimal and numbers preceded with % are binary. $xx
is used to indicate a byte with unknown content. %x is used to indicate a
bit with unknown content. The most significant bit (MSB) of a byte is
called ‘bit 7’ and the least significant bit (LSB) is called ‘bit 0’.

A tag is the whole tag described the ID3v2 main structure document [2]. A
frame is a block of information in the tag. The tag consists of a header,
frames and optional padding. A field is a piece of information; one value,
a string etc. A numeric string is a string that consists of the characters
“0123456789” only.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

Introduction

The ID3v2 standards provide a way to deliver metadata that is predominantly
human-readable, textual data. However, in this form the information is not
easily accessible to the visually impaired.

The purpose of this Addendum is to allow content providers or third-party
tools to provide an audio description (i.e. a spoken narrative) that is
equivalent to the textual information carried by an ID3v2 frame. A new
“audio-text” frame is defined which carries an audio clip and a matching
equivalent text string. These text strings can be compared against the
strings carried by other ID3v2 frames to identify when a matching audio
description is available.

The audio clips can be played whenever the equivalent textual information
is displayed or highlighted, providing a greatly improved user interface
for the visually impaired. However, the feature may also be popular with
other users and useful for media players with limited display capabilities.

Proposed audio-text frame

The purpose of this frame is to carry a short audio clip which represents
the information carried by another ID3v2 frame that is present in the same
tag.

To avoid these audio clips being confused with the main audio content of
the file the ID3v2 unsynchronisation scheme must be used if the audio clip
uses an MPEG audio format. If the unsynchronisation scheme is not
appropriate for the audio format then the scrambling scheme defined in
section 5 must be applied to the audio clip data.

<ID3v2.3 or ID3v2.4 frame header, ID: "ATXT">
Text encoding $xx
MIME type <text string> $00
Flags %0000000a
Equivalent text <text string according to encoding> $00 (00)
Audio data <binary data>

The Frame ID for the audio-text frame shall be set to “ATXT” using
ISO-8859-1 character encoding.

The MIME type shall be represented as a terminated string encoded using
ISO-8859-1 character encoding. Where the MIME type corresponds to MPEG 1/2
layer I, II and III, MPEG 2.5 or AAC audio the ID3v2 unsynchronisation
scheme should be applied, either to the audio-text frame or to the tag
which contains it. For other MIME types the scrambling scheme defined in
the Appendix should be applied to the audio data.

	Flag a - Scrambling flag

	This flag shall be set if the scrambling method defined in Section 5
has been applied to the audio data, or not set if no scrambling has
been applied.

The Equivalent text field carries a null terminated string encoded
according to the Text encoding byte as defined by the ID3v2
specifications [1], [2]. This text must be semantically equivalent to
the spoken narrative in the audio clip and should match the text and
encoding used by another ID3v2 frame in the tag.

The Audio data carries an audio clip which provides the audio
description. The encoding of the audio data shall match the MIME type
field and the data shall be scrambled if the scrambling flag is set.

More than one audio-text frame may be present in a tag but each must
carry a unique string in the Equivalent text field.

Scrambling scheme for non-MPEG audio formats

This scrambling scheme is provided for non-MPEG audio formats where the
unsynchronisation scheme defined by the ID3v2 specifications is unsuitable.
Each bit of the audio data is scrambled by taking the exclusive-OR (XOR)
between it and the equivalent bit of a pseudo-random byte sequence. The
first byte of this pseudo-random byte sequence is always %11111110 and is
used to scramble the first byte of the audio data. The next byte of the
sequence is derived from the current byte of the sequence using the
algorithm in Table 1 and is used to scramble the next byte of audio data.
This process is repeated until all bytes in the audio clip have been
scrambled.

	Table 1: Scrambling sequence algorithm

	byte N+1
	byte N

	bit 7 =
	bit 6 XOR bit 5

	bit 6 =
	bit 5 XOR bit 4

	bit 5 =
	bit 4 XOR bit 3

	bit 4 =
	bit 3 XOR bit 2

	bit 3 =
	bit 2 XOR bit 1

	bit 2 =
	bit 1 XOR bit 0

	bit 1 =
	bit 7 XOR bit 5

	bit 0 =
	bit 6 XOR bit 4

This algorithm results in a 127-bit pseudo-random sequence which repeats on
byte boundaries every 127 bytes. To recover the audio data from the
scrambled data the scrambling procedure is repeated.

Notes

	Failure to use the ID3v2 unsynchronisation scheme or the alternative
scrambling scheme, as appropriate to the audio format, is very likely to
confuse media players which are likely to start playback when an
audio-text frame in encountered rather than at the end of the ID3v2 tag.

	Players which only support MPEG audio formats are not required to support
the scrambling scheme provided for non-MPEG formats.

	It is not required to provide an audio-text frame to represent every text
string present in a tag. The emphasis should be on text strings in frames
that are commonly used to identify and describe the content (e.g
“TIT2”, “TALB” & “TPE1”).

	A parser that does not recognise “ATXT” frames can skip them using the size
field in the frame header.

	Editing text fields in ID3 tags may result in the retention of irrelevant
ATXT frames and gaps in the provision of audio text unless action is
taken to amend the corresponding ATXT frames.

Copyright

Copyright © BBC Future Media & Technology, 2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that a
reference to this document is included on all such copies and derivative
works. However, this document itself may not be modified in any way and
reissued as the original document.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided on an “AS
IS” basis and THE AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

References

Martin Nilsson, ID3 tag version 2.3.0.

Martin Nilsson, ID3 tag version 2.4.0 - Main Structure.

	Nilsson, “ID3 tag version 2.4.0 - Native frames.

S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels”, RFC
2119, March 1997.

Author’s address

Chris Newell

BBC Research & Development

Kingswood Warren

Tadworth

Surrey

KT20 6NP

UK

Email: chris.newell at bbc.co.uk

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

ID3v1 Winamp Genre Mapping

	ID
	Name

	0
	Blues

	1
	Classic Rock

	2
	Country

	3
	Dance

	4
	Disco

	5
	Funk

	6
	Grunge

	7
	Hip-Hop

	8
	Jazz

	9
	Metal

	10
	New Age

	11
	Oldies

	12
	Other

	13
	Pop

	14
	R&B

	15
	Rap

	16
	Reggae

	17
	Rock

	18
	Techno

	19
	Industrial

	20
	Alternative

	21
	Ska

	22
	Death Metal

	23
	Pranks

	24
	Soundtrack

	25
	Euro-Techno

	26
	Ambient

	27
	Trip-Hop

	28
	Vocal

	29
	Jazz+Funk

	30
	Fusion

	31
	Trance

	32
	Classical

	33
	Instrumental

	34
	Acid

	35
	House

	36
	Game

	37
	Sound Clip

	38
	Gospel

	39
	Noise

	40
	Alt. Rock

	41
	Bass

	42
	Soul

	43
	Punk

	44
	Space

	45
	Meditative

	46
	Instrumental Pop

	47
	Instrumental Rock

	48
	Ethnic

	49
	Gothic

	50
	Darkwave

	51
	Techno-Industrial

	52
	Electronic

	53
	Pop-Folk

	54
	Eurodance

	55
	Dream

	56
	Southern Rock

	57
	Comedy

	58
	Cult

	59
	Gangsta Rap

	60
	Top 40

	61
	Christian Rap

	62
	Pop/Funk

	63
	Jungle

	64
	Native American

	65
	Cabaret

	66
	New Wave

	67
	Psychedelic

	68
	Rave

	69
	Showtunes

	70
	Trailer

	71
	Lo-Fi

	72
	Tribal

	73
	Acid Punk

	74
	Acid Jazz

	75
	Polka

	76
	Retro

	77
	Musical

	78
	Rock & Roll

	79
	Hard Rock

	80
	Folk

	81
	Folk-Rock

	82
	National Folk

	83
	Swing

	84
	Fast-Fusion

	85
	Bebop

	86
	Latin

	87
	Revival

	88
	Celtic

	89
	Bluegrass

	90
	Avantgarde

	91
	Gothic Rock

	92
	Progressive Rock

	93
	Psychedelic Rock

	94
	Symphonic Rock

	95
	Slow Rock

	96
	Big Band

	97
	Chorus

	98
	Easy Listening

	99
	Acoustic

	100
	Humour

	101
	Speech

	102
	Chanson

	103
	Opera

	104
	Chamber Music

	105
	Sonata

	106
	Symphony

	107
	Booty Bass

	108
	Primus

	109
	Porn Groove

	110
	Satire

	111
	Slow Jam

	112
	Club

	113
	Tango

	114
	Samba

	115
	Folklore

	116
	Ballad

	117
	Power Ballad

	118
	Rhythmic Soul

	119
	Freestyle

	120
	Duet

	121
	Punk Rock

	122
	Drum Solo

	123
	A Cappella

	124
	Euro-House

	125
	Dance Hall

	126
	Goa

	127
	Drum & Bass

	128
	Club-House

	129
	Hardcore

	130
	Terror

	131
	Indie

	132
	BritPop

	133
	Afro-Punk

	134
	Polsk Punk

	135
	Beat

	136
	Christian Gangsta Rap

	137
	Heavy Metal

	138
	Black Metal

	139
	Crossover

	140
	Contemporary Christian

	141
	Christian Rock

	142
	Merengue

	143
	Salsa

	144
	Thrash Metal

	145
	Anime

	146
	JPop

	147
	Synthpop

	148
	Abstract

	149
	Art Rock

	150
	Baroque

	151
	Bhangra

	152
	Big Beat

	153
	Breakbeat

	154
	Chillout

	155
	Downtempo

	156
	Dub

	157
	EBM

	158
	Eclectic

	159
	Electro

	160
	Electroclash

	161
	Emo

	162
	Experimental

	163
	Garage

	164
	Global

	165
	IDM

	166
	Illbient

	167
	Industro-Goth

	168
	Jam Band

	169
	Krautrock

	170
	Leftfield

	171
	Lounge

	172
	Math Rock

	173
	New Romantic

	174
	Nu-Breakz

	175
	Post-Punk

	176
	Post-Rock

	177
	Psytrance

	178
	Shoegaze

	179
	Space Rock

	180
	Trop Rock

	181
	World Music

	182
	Neoclassical

	183
	Audiobook

	184
	Audio Theatre

	185
	Neue Deutsche Welle

	186
	Podcast

	187
	Indie Rock

	188
	G-Funk

	189
	Dubstep

	190
	Garage Rock

	191
	Psybient

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	ID3

Off-Spec Frames

iTunes

TCMP/TCP - iTunes Compilation Flag

TDES - iTunes Podcast Description

TGID - iTunes Podcast Identifier

TSO2 - iTunes Album Artist Sort

TSOC - iTunes Composer Sort

WFED - iTunes Podcast Feed

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

Musepack

	SV8 Specification

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	Musepack

SV8 Specification

Note: All fields, unless explicitly specified otherwise are read and
written in Big-Endian order.

Status of this document

This document is a work in progress, but part of the document will not be changed.

Here is how the status is indicated for each part:

	Status
	Meaning

	[final]
	This part is final and will not be changed

	[beta]
	This part will not be changed unless necessary

	[alpha]
	This part is still discussed and will probably change

	nothing specified
	This part is here for discussion, and not part of the specification

File magic number

[final] Magic number is on 32bits and is equal to ‘MPCK’ or 0x4D50434B

File extension

[final] The prefered file extension for musepack files is .mpc

Packet formatting

[final] All packets are formatted using Key / Size / Payload. Keys are
16 bits long. It’s equivalent to the packet ID or type. Size is a
variable-size field:

bits, big-endian
0xxx xxxx - value 0 to 2^7-1
1xxx xxxx 0xxx xxxx - value 0 to 2^14-1
1xxx xxxx 1xxx xxxx 0xxx xxxx - value 0 to 2^21-1
1xxx xxxx 1xxx xxxx 1xxx xxxx 0xxx xxxx - value 0 to 2^28-1
...

Size defines the packet length in bytes, including the Key and Size fields.
So the minimum length of a block is 3 bytes. The payload is the actual
packet data. Its size can be null. All unused bits in a packet MUST be null.

	Field
	Size (bits)
	Value

	Key
	16
	“EX”

	Size
	n*8; 0 < n < 10
	0x1A

	Payload
	Size * 8
	“example”

Summary of reserved packet keys

Allowed chars in key are [A-Z] (65 <= value <= 90), so 676 keys are valid
out of 65536 possible.

	Packet Name
	Key
	Mandatory
	Status

	Stream Header
	SH
	yes
	[final]

	Replaygain
	RG
	yes
	[final]

	Encoder Info
	EI
	no
	[final]

	Seek Table Offset
	SO
	no
	[final]

	Audio Packet
	AP
	yes
	[final]

	Seek Table
	ST
	no
	[final]

	Chapter-Tag
	CT
	no
	[beta]

	Stream End
	SE
	yes
	[final]

Stream Header Packet

[final] This packet key is “SH”. It contains the information needed to
decode the stream. This block is mandatory and must be written before the
first audio packet.

	Field
	Size (bits)
	Value
	Comment

	CRC
	32
	
	CRC 32 of the block (this field excluded). 0 = invalid

	Stream version
	8
	8
	Bitstream version

	Sample count
	n*8; 0<n<10
	
	Number of samples in the stream. 0 = unknown

	Beginning silence
	n*8; 0<n<10
	
	Number of samples to skip at the beginning of the stream

	Sample frequency
	3
	0..7
	See table below

	Max used bands
	5
	1..32
	Maximum number of bands used in the file

	Channel count
	4
	1..16
	Number of channels in the stream

	MS used
	1
	
	True if Mid Side Stereo is enabled

	Audio block frames
	3
	0..7
	Number of frames per audio packet (4^value=(1..16384))

Do we need to specify the channel position ? There seems to be no standard
for positions / order of the channels.

The SV8 stream allows to start decoding only on the first packet frame, so
cutting the stream requires cutting on packet boundaries. Beginning silence
and sample count fields provide more precise cutting possibilities.

Frequency table

	Value
	Frequency (Hz)

	0
	44100

	1
	48000

	2
	37800

	3
	32000

The CRC used is this one : http://www.w3.org/TR/PNG/#D-CRCAppendixhttp://www.w3.org/TR/PNG/#D-CRCAppendix.

Replaygain Packet

[final] This packet key is “RG”. It contains the necessary data needed
to apply replaygain on the current stream. This packet is mandatory and
must be written before the first audio packet.

	Field
	Size (bits)
	Value
	Comment

	ReplayGain version
	8
	1
	The replay gain version

	Title gain
	16
	
	The loudness calculated for the
title, and not the gain that the
player must apply

	Title peak
	16
	
	

	Album gain
	16
	
	The loudness calculated for the album

	Album peak
	16
	
	

The replay gain values are stored in dB in Q8.8 format.
The 0 value means that this field has not been computed (no gain must be applied in this case.
exemples :

	Replay gain finds that this title has a loudness of 78.56 dB. It will be
encoded as 78.56 * 256 ~ 20111 = 0x4E8F

	For 16-bit output (range [-32767 32768]), the max is 68813 (out of
range). It will be encoded as 20 * log10(68813) * 256 ~ 24769 = 0x60C1

	For float output (range [-1 1]), the max is 0.96. It will be encoded as
20 * log10(0.96 * 2^15^) * 256 ~ 23029 = 0x59F5 (for peak values it is
suggested to round to nearest higher integer)

Encoder Info Packet

[final] This packet key is “EI”.

	Field
	Size (bits)
	Value
	Comment

	Profile
	7
	0..15.875
	quality in 4.3 format

	PNS tool
	1
	True if enabled
	

	Major
	8
	1
	Major version

	Minor
	8
	17
	Minor version, even numbers for stable
version, odd when unstable

	Build
	8
	3
	Build

Seek Table Offset Packet

[final] This packet key is “SO”. It contains an offset to the seek
table packet. This packet must be written before the first audio packet.
This packet must be present if the “ST” packet is present and is written
after the first audio packet.

	Field
	Size (bits)
	Value
	Comment

	Offset
	n*8; 0 < n < 10
	
	Offset from this packet to the seek
table packet

Audio Packet

[final] This packet key is “AP”. It contains audio frames. The first
frame is a key frame.

	Field
	Size (bits)
	Comment

	Audio Frames
	?
	n (or less if last packet) frames of audio
as defined in SH packet

Seek Table Packet

[final] This packet key is “ST”.

	Field
	Size (bits)
	Value
	Comment

	Seek Count
	n*8; 0 < n < 10
	
	Number of seek elements in this table

	Seek Distance
	4
	0..15
	Distance between referenced blocks = 2^Value

	Seek Data
	?
	
	

Format of seek data:

	Reference offset for seeking is the musepack magic number

	First 2 values are stored using the same code as the packet size code.

	Next values are coded as:

code = value(n) - 2*value(n-1) + value(n-2)
code <<= 1;
if (code < 0)
 code = -code | 1;

code is sent as golomb code [http://en.wikipedia.org/wiki/Golomb_code]
with M = 2^12^.

Chapter-Tag Packet

[beta] This packet key is “CT”. It contains a chapter position and
associated tag. There is 1 packet for each chapter. When used in a file,
all CT packets must be consecutive. They must be the next (group of) packet
after Seek Table packet if present at the end of the file, or the last
(group of) packet before the Stream End packet else. Chapters are presented
by the application in the same order as they appear in the file. When
used while streaming, this packet can be inserted between AP packets, and
the tag data is valid for the next samples, until a new CT packet is sent.

	Field
	Size (bits)
	Value
	Comment

	Sample offset
	n*8; 0 < n < 10
	
	Position of the chapter in samples.
In a file from the beginning of the
file, in a stream from the last sample
before this packet

	Chapter gain
	16
	
	The loudness calculated for the chapter,
and not the gain that the player must apply

	Chapter peak
	16
	
	

	APEv2 tag
	n*8
	
	APEv2 tag without the preamble
{ ‘A’, ‘P’, ‘E’, ‘T’, ‘A’, ‘G’, ‘E’, ‘X’ }
in the header or footer, preferably without
footer. This field is optional.

Security Packet

Checksum (MD5, SHA1) or error correcting code (LDPC). To be defined later.
May be better to keep security features external only.

Stream End Packet

[final] This packet key is “SE”. The packet size must be 3 bytes. This
packet is mandatory and must be the last stream packet. Tags, if present,
must be written after this packet.

Streaming

[alpha] This file format can be used for streaming. The “SH” block is (can
be?) used as a synchronization marker. The decoder will scan for a “SH”
block and check its CRC. Once the decoder is synchronized, it will start
decoding. It’s up to the streaming server to choose when to send “SH”
block. To send meta data while streaming, the Chapter-Tag packet can be used.

Tags

[final] No packet must be written after the stream end packet, to allow
tagging by other applications. Those tags are global to the file, and
define the default values for all the tag fields. The Chapter-Tag packet
can redefine the field value for each chapter.

Example file

Packets keys and magic number are highlighted:

00000000 4D 50 43 4B 53 48 0F 12 A5 AB 62 08 84 FA C1 40 00 1B 1B 52 MPCKSH....b....@...R
00000014 47 0C 01 00 00 00 00 00 00 00 00 45 49 07 A0 01 17 00 53 4F G..........EI.....SO
00000028 08 82 C2 83 31 00 41 50 82 B2 01 BA A7 36 59 FE BC 7B CD 3E 1.AP.....6Y..{.>
0000003C 10 3B EF 9B 3A 8E DA 22 0B 64 9A 67 AE EC 99 CB 2A 66 4C 79 .;..:..".d.g....*fLy

... Lots of Audio Packets

005081C4 BF FF FF 85 03 81 B7 32 A0 2E 3A E0 D4 FC 20 16 A0 40 80 53 2..:... ..@.S
005081D8 54 81 01 47 12 E8 58 21 73 01 83 DC A8 1D 95 4B D9 F5 37 EF T..G..X!s......K..7.
005081EC A9 1E AB 86 CA 3A 1E 12 B7 F4 9A 2A C4 76 84 13 79 95 09 FA :.....*.v..y...
00508200 AB D1 86 7C 53 0D BF 84 E9 B3 3F 42 13 EB 02 EE A8 15 CC 79 ...|S.....?B.......y
00508214 20 01 5C 41 0F 21 2A 99 27 78 A6 E8 45 BB 67 A3 10 DE 45 5E .\A.!*.'x..E.g...E^
00508228 8F 38 6B E2 5C 6E 44 09 86 E0 E6 B7 B3 77 67 80 21 04 BF 20 .8k.\nD......wg.!..
0050823C C7 FC BD 9D 77 A5 4D 8C C5 38 38 F6 8D 52 2B FC 56 43 D5 5A w.M..88..R+.VC.Z
00508250 AE 2F AD B9 A2 51 D1 D0 53 45 03 ./...Q..SE.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

APEv2

	APEv2

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

 	APEv2

APEv2

This is how information is laid out in an APEv2 tag:

	APE Tags Header
	32 bytes

	APE Tag Item 1
	10.. bytes

	APE Tag Item 2
	10.. bytes

	...
	10.. bytes

	APE Tag Item n-1
	10.. bytes

	APE Tag Item n
	10.. bytes

	APE Tags Footer_
	32 bytes

APE tag items should be sorted ascending by size. When streaming, parts of
the APE tags can be dropped to reduce danger of drop outs between titles.
This is not a must, but strongly recommended. Actually the items should be
sorted by importance/byte, but this is not feasible. Only break this rule
if you add less important small items and you don’t want to rewrite the
whole tag. An APE tag at the end of a file (strongly recommended) must have
at least a footer, an APE tag in the beginning of a file (strongly
unrecommended) must have at least a header. When located at the end of an
MP3 file, an APE tag should be placed after the the last frame, just before
the ID3v1 tag (if any).

APE Tags Header/Footer

Contains number, length and attributes of all tag items

Header and Footer are different in 1 bit in the Tags Flags to distinguish between them.

Member of APE Tag 2.0

	Preamble
	64 bits
	{ ‘A’, ‘P’, ‘E’, ‘T’, ‘A’, ‘G’, ‘E’, ‘X’ }

	
Version Number, Bits 0...7

Version Number, Bits 8...15

Version Number, Bits 16...23

Version Number, Bits 24...31

	32 bits
	1000 = Version 1.000 (old)
2000 = Version 2.000 (new)

	
Tag Size, Bits 0... 7

Tag Size, Bits 8...15

Tag Size, Bits 16...23

Tag Size, Bits 24...31

	32 bits
	Tag size in bytes including footer and all
tag items excluding the header to be as
compatible as possible with APE Tags 1.000

	
Item Count, Bits 0... 7

Item Count, Bits 8...15

Item Count, Bits 16...23

Item Count, Bits 24...31

	32 bits
	Number of items in the Tag (n)

	
Tags Flags, Bits 0... 7

Tags Flags, Bits 8...15

Tags Flags, Bits 16...23

Tags Flags, Bits 24...31

	32 bits
	Global flags of all items
(there are also private flags for
every item)

	Reserved
	64 bits
	Must be zero

Ape Tags Flags

Contains attribute of the tag (bit 31...) and of a item (bit 0...)

Member of APE Tags Header, Footer or Tag item

Note: APE Tags 1.0 do not use any of the APE Tag flags. All are set to zero
on creation and ignored on reading.

	Bit 31

	
	0: Tag contains no header

	1: Tag contains a header

	Bit 30

	
	0: Tag contains a footer

	1: Tag contains no footer

	Bit 29

	
	0: This is the footer, not the header

	1: This is the header, not the footer

	Bit 28...3

	Undefined, must be zero

	Bit 2...1

	
	0: Item contains text information coded in UTF-8

	1: Item contains binary information*

	2: Item is a locator of external stored information**

	3: reserved

	Bit 0

	
	0: Tag or Item is Read/Write

	1: Tag or Item is Read Only

[*] Binary information: Information which should not be edited by a text
editor, because

	Information is not a text.

	Contains control characters

	Contains internal restrictions which can’t be handled by a normal text editor

	Can’t be easily interpreted by humans.

[**] Allowed formats:

	http://host/directory/filename.ext

	ftp://host/directory/filename.ext

	filename.ext

	/directory/filename.ext

	DRIVE:/directory/filename.ext

Note: Locators are also UTF-8 encoded. This can especially occur when
filenames are encoded.

APE Tag Item

An APE tag item is a value assigned by a key.

Member of APE Tag Version 2.0

Note:

	APE Tags Item Key are case sensitive.

	Nevertheless it is forbidden to use APE Tags Item Key which only differs
in case.

	And nevertheless Tag readers are recommended to be case insensitive.

	Every Tag Item Key can only occures (at most) once. It is not possible to
transmit a Tag Key multiple time to change it contents.

	Tags can be partially or complete repeated in the streaming format.

	This is to make it possible to display artist and title if you missed the
start of the transmission.

	It is recommended to transmit very important information like artist /
album / title every 2 minutes and additional 5...10 seconds before the
end. Be careful and don’t transmit these information too often or during
passages with high bitrate demand to avoid unnecessary drop-outs.

	
Size of the Item Value, Bits 0...7

Size of the Item Value, Bits 8...15

Size of the Item Value, Bits 16...23

Size of the Item Value, Bits 24...31

	32 bits
	Length len of the assigned value in bytes

	
Item Flags, Bits 0...7

Item Flags, Bits 8...15

Item Flags, Bits 16...23

Item Flags, Bits 24...31

	32 bits
	Item flags

	Item Key
	m bytes
	Item key, can contain ASCII characters
from 0x20 (Space) up to 0x7E (Tilde)

	0x00
	1byte
	Item key terminator

	Item Value
	len bytes
	Item value, can be binary data or
UTF-8 string

APE Key

	An APE tag item key is a key for accessing special meta-information in an
audio file.

	Member of APE Tag Item.

	APE tag item keys can have a length of 2 (including) up to 255 (including)
characters in the range from 0x20 (Space) until 0x7E (Tilde).

	Typical keys should have a length of 2 ... 16 characters using the
following characters: Space (0x20), Slash (0x2F), Digits (0x30...0x39),
Letters (0x41...0x5A, 0x61...0x7A).

	Values can contain binary data, a value or a list of values. See here.
List of values can be mixed, i.e. contain UTF-8 strings and external
references beginning with file://..., http://www..., ftp://ftp....

	Not allowed are the following keys: ID3, TAG, OggS and MP+.

Currently the following keys are defined:

TODO

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

MP4

	QuickTime File Format Specification [https://developer.apple.com/library/mac/documentation/quicktime/QTFF/qtff.pdf]

	ISO_IEC_14496-12 [https://github.com/lucidwind/mpeg4/raw/master/ISO_IEC_14496-12_2008.pdf]

	ISO_IEC_14496-14 [https://github.com/lucidwind/mpeg4/raw/master/ISO_IEC_14496-14-2003.pdf]

Multivalue Tags

Note

not finished..

The only case where iTunes writes multiple values is the covr atom by
including multiple data atoms.

For a collection of 1700 random mp4s the only place where multiple values
occur is multiple ---- atoms with com.apple.iTunes:unknown as
identifier.

Foobar2000 (1.3.3)

	Writing:

	Foobar writes single values in the official atoms and multiple values
in the reverse DNS namespace. Multiple values get saved as multiple
--- with the same name and one data each.

	Reading:

	Foobar only reads the first data atom in all child atoms in ilst
and ----. Everything else gets ignored and thrown out on save.

iTunes (11.4)

	Writing:

	Given two \xa9gen atoms with each two data atoms. Modifying
the genre modifies the first data atom of the second \xa9gen atom
and it leaves the second data as is and writes is back. The first
\xa9gen atom gets thrown out. If the genre gets removed in the
iTunes GUI, both \xa9gen get thrown out.

	Reading:

	Given two \xa9gen atoms with each two data atoms it displays
the first data of the second \xa9gen.

No idea how it handles --- atoms.

So, multiple values for official ilst sub atoms should be saved
as multiple data because iTunes will at least not touch other values
and editing/display use the first one.

Random Struct Decls

class DecoderConfigDescriptor extends BaseDescriptor :
 bit(8) tag=DecoderConfigDescrTag {
 bit(8) objectTypeIndication;
 bit(6) streamType;
 bit(1) upStream;
 const bit(1) reserved=1;
 bit(24) bufferSizeDB;
 bit(32) maxBitrate;
 bit(32) avgBitrate;
 DecoderSpecificInfo decSpecificInfo[0 .. 1];
 profileLevelIndicationIndexDescriptor profileLevelIndicationIndexDescr[0..255];
}

class ES_Descriptor extends BaseDescriptor :
 bit(8) tag=ES_DescrTag {
 bit(16) ES_ID;
 bit(1) streamDependenceFlag;
 bit(1) URL_Flag;
 bit(1) OCRstreamFlag;
 bit(5) streamPriority;
 if (streamDependenceFlag)
 bit(16) dependsOn_ES_ID;
 if (URL_Flag) {
 bit(8) URLlength;
 bit(8) URLstring[URLlength];
 }
 if (OCRstreamFlag)
 bit(16) OCR_ES_Id;
 DecoderConfigDescriptor decConfigDescr;
 if (ODProfileLevelIndication==0x01) //no SL extension.
 {
 SLConfigDescriptor slConfigDescr;
 }
 else // SL extension is possible.
 {
 SLConfigDescriptor slConfigDescr;
 }
 IPI_DescrPointer ipiPtr[0 .. 1];
 IP_IdentificationDataSet ipIDS[0 .. 255];
 IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
 LanguageDescriptor langDescr[0 .. 255];
 QoS_Descriptor qosDescr[0 .. 1];
 RegistrationDescriptor regDescr[0 .. 1];
 ExtensionDescriptor extDescr[0 .. 255];
}

abstract class DecoderSpecificInfo extends BaseDescriptor :
 bit(8) tag=DecSpecificInfoTag
{
 // empty. To be filled by classes extending this class.
}

AudioSpecificConfig if objectTypeIndication == 0x40 and streamType = 0x5

AudioSpecificConfig extends DecoderSpecificInfo
{
 bit(5) audioObjectType;
 if (audioObjectType == 31) {
 audioObjectType = 32 + bit(6) audioObjectTypeExt;
 }

 [...]
}

audioObjectType is defined in 14496-3 1.6.2.2.1

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mutagen Specs 1.0 documentation

ASF

Multiple Values

(Tested with Windows 8)

The following text keys support multiple values in Win8:

Author, WM/Composer, WM/Conductor, WM/Producer, WM/Category, WM/Genre

For saving/reading multiple values:

	For tags which can be in ContentDescription (Author) write the first value
there, the rest in MetadataLibrary.

	For tags which can be in ExtendedContentDescription (WM/Composer) write
the first value there and the rest in MetadataLibrary.

	When reading, the order in which the objects appear in the file doesn’t
matter. First value from ContentDescription, rest from MetadataLibrary etc.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Mutagen Specs 1.0 documentation

Ogg

	Xiph Formats [http://www.xiph.org/]
	Ogg bitstream structure [http://www.xiph.org/ogg/doc/rfc3533.txt]

	Vorbis comment structure [http://www.xiph.org/vorbis/doc/v-comment.html]

	Ogg Vorbis embedding [http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html]

	FLAC format [http://flac.sourceforge.net/format.html], and
Ogg FLAC embedding [http://flac.sourceforge.net/ogg_mapping.html]

	Ogg Theora embedding [http://theora.org/doc/Theora_I_spec.pdf]

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Mutagen Specs 1.0 documentation

Index

 Copyright .
 Created using Sphinx 1.3.5.

 _static/down.png

_static/up.png

_static/up-pressed.png

_images/CTOCFrame-1.0.png
CTOC Frame.

croc|
dai

Element Represeniaion
Frame ID o000
1D3v2 Frame
Header Sze 4~ SkDoooonnx
(abways 10 bytes)
Flags. S
Eloment 1D, <siring>$00
CT0C Fiags sorx
Entry count x
Chitd elament D (1) | [<string>$00
Zera or more
CHAPICTOC Child child element D (2} | [<string>$00
clement ID's T
'
Chitd element D n) | [<string>$00
Frame ID o000
1D3v2 Frame
Header size 4~ koo
(abways 10 bytes)
tescripive
(optional) i o
Taxtancading S0
Information <string>$00

‘Sizejsample data
“CTOC" (4 characters)

4 byles — sync safe nteger

2byies

Nullterminated string

CTOC specific flags (see below)

&bit unsigned ineger

Nul terminated sting; e.g., CH1

Nullterminated strng; 0.9., CH2

Nul terminated sting

“TITZ (4 characters)

4 byles - sync safe integer

2byies

500 for 1S0-8859-1

Nullterminated sting; e.g."Part 1"

CTOC Flags: %000000ab

2~ Top-level (1 if CTOC has no parent, 0 if it has a parent)

b - Ordered (1 if entries are in-order, 0 if order is not important)

_images/CHAPFrame-1.0.png
Chapter Frame
Min sizo 27 bytes

Embel

Embel

Element Bepreseniaion
Frame 1D Soon oo
1D3v2 Frame
Header = PSS
(abvays 10 bytes) B
Fage Sioo0c
Element 1D <sting>500
Start time T
CHAP frame
required clements Endime oo
Starofset T
End offset PR
Frame D T
1D3v2 Frame
Header = PSS
o2 | oMars 0 bys) L
Subiame m—
{(optiona) Fiags
Text sncoding o
Tite for CHAP
rformation <sring>$00
Frame D e
103 Frame Header = -
ahvays 10 bytes) sz 4 oo
ded TIT3
subframe o
(optiona Fiags
Toxt sncodng Sor
CHAP dascripton
rformation <sing>$00

‘Sizelsample data
“CHAP (4 characiers)

4 bytes —sync safe integer

2bytes

Nullterminated sting maps 1o GTOC
Chid Element 1D; .0, CH1

4 bytes - milisscond offset rom start:

4 bytes - milisscond offset rom start

4 bytes - zoro based byte offset from sart

4 bytes ~ zoro based byte offset from sart

“TITZ (4 characters)

4 bytes —sync safe integer

2bytes

500

Null terminated sting; .9, “Chapter 1 - Loomings"

“TITS" (4 bytes)

4 bytes - sync safe nteger

2bytes

500

Null terminated sting; .9, “Aniipation o the
hunt”

README.html

 Navigation

 		
 index

 		Mutagen Specs 1.0 documentation »

Mutagen Specs

Some specs converted to reST + anything related. The main motivation for this
was that id3.org was down for some time...

 © Copyright .
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Mutagen Specs 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.5.

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

